Reasoning with Probabilistic Logics

RICCARDO ZESE

Dipartimento di Ingegneria – University of Ferrara
Via Saragat 1, 44122, Ferrara, Italy
(e-mail: riccardo.zese@unife.it)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

The interest in the combination of probability with logics for modeling the world has rapidly increased in the last few years. One of the most effective approaches is the Distribution Semantics which was adopted by many logic programming languages and in Description Logics. In this paper, we illustrate the work we have done in this research field by presenting a probabilistic semantics for description logics and reasoning and learning algorithms. In particular, we present in detail the system TRILL, which computes the probability of queries w.r.t. probabilistic knowledge bases, which has been implemented in Prolog. Note: An extended abstract / full version of a paper accepted to be presented at the Doctoral Consortium of the 30th International Conference on Logic Programming (ICLP 2014), July 19-22, Vienna, Austria

1 Introduction

In the last few years, many researchers tried to combine first-order logic and probability for modeling uncertain domains and performing inference and learning. In the field of Probabilistic Logic Programming (PLP for short) many proposals have been presented. An effective and popular approach is the Distribution Semantics (Sato 1995), which underlies many PLP languages such as PRISM (Sato 1995; Sato and Kamaya 2001), Independent Choice Logic (Poole 1997), Logic Programs with Annotated Disjunctions (Vennekens et al. 2004) and ProbLog (De Raedt et al. 2007). Along this line, many researchers proposed to combine probability theory with Description Logics (DLs for short) (Lukasiewicz and Straccia 2008; Straccia 2008). DLs are at the basis of the Web Ontology Language (OWL for short), a family of knowledge representation formalisms used for modeling information of the Semantic Web (Hitzler et al. 2009). In (Riguzzi et al. 2012) we presented DISPONTE, a probabilistic semantics for DLs based on the distribution semantics that allows probabilistic assertional and terminological knowledge.

In order to allow inference over the information in the Semantic Web, many efficient DL reasoners, such as Pellet (Sirin et al. 2007), RacerPro (Haarslev et al. 2012) and HermiT (Shearer et al. 2008), have been developed. Despite the availability of many DL reasoners, the number of probabilistic reasoners is quite small. In (Riguzzi et al. 2013a) we presented BUNDLE, a reasoner based on Pellet that extends it by allowing to perform inference on DISPONTE theories. Most of the available DL reasoners, included BUNDLE,
exploit procedural languages for implementing their reasoning algorithms. Nonetheless, some of them use non-deterministic operators for doing inference. We implemented a reasoner, called TRILL (Zese et al. 2013), that exploits Prolog for managing the non-determinism. Then, we developed a new version of TRILL, called TRILLP and we added in both versions the ability to manage DISPONTE knowledge bases (KBs for short) and computing the probability of a query given a probabilistic KB under the DISPONTE semantics.

Since a problem of probabilistic KBs is that the parameters are difficult to define, in (Riguzzi et al. 2013b) we presented EDGE that learns the parameters of a DISPONTE KB from the information available in the domain. Moreover, we are currently working on the extension of EDGE in order also to learn the structure of the probabilistic KB together with the parameters.

In the field of PLP, we are working at improving existing algorithms. We have considered lifted inference that allows to perform inference in a time that is polynomial in the variables’ domain size. We applied lifted variable elimination, and GC-FOVE (Taghipour et al. 2013) in particular, to PLP and developed the algorithm LP2.

The paper is organised as follows. Section 2 briefly introduces ALC, while Section 3 presents the DISPONTE semantics. Section 4 defines the problem of finding explanations for a probabilistic query w.r.t. a given probabilistic KB. Section 5 presents TRILL and TRILLP and Section 6 discusses related work. Section 7 shows experiments and section 8 discusses our achievements and future plans. Finally, Section 9 concludes the paper.

2 Description Logics

DLs are knowledge representation formalisms that are at the basis of the Semantic Web (Baader et al. 2003; Baader et al. 2008) and are used for modeling ontologies. They are represented using a syntax based on concepts, basically sets of individuals of the domain, and roles, sets of pairs of individuals of the domain. In this section, we recall the expressive description logic ALC (Schmidt-Schauß and Smolka 1991). We refer to (Lukasiewicz and Straccia 2008) for a detailed description of SHOIN(D) DL, that is at the basis of OWL DL.

Let A, R and I be sets of atomic concepts, roles and individuals. A role is an atomic role R \in R. Concepts are defined by induction as follows. Each C \in A, ⊥ and ⊤ are concepts. If C, C_1 and C_2 are concepts and R \in R, then (C_1 \sqcap C_2), (C_1 \sqcup C_2), ¬C, \exists R.C, and \forall R.C are concepts. Let C, D be concepts, R \in R and a, b \in I. An ABox A is a finite set of concept membership axioms a : C and role membership axioms (a, b) : R, while a TBox T is a finite set of concept inclusion axioms C \sqsubseteq D. C \equiv D abbreviates C \sqsubseteq D and D \sqsubseteq C.

A knowledge base \mathcal{K} = (T, A) consists of a TBox T and an ABox A. A KB \mathcal{K} is assigned a semantics in terms of set-theoretic interpretations I = (\Delta^T, \cdot^T), where \Delta^T is a non-empty domain and \cdot^T is the interpretation function that assigns an element in \Delta^T to each a \in I, a subset of \Delta^T to each C \in A and a subset of \Delta^T \times \Delta^T to each R \in R.

A query Q over a KB \mathcal{K} is an axiom for which we want to test the entailment from the knowledge base, written \mathcal{K} \models Q. The entailment test may be reduced to checking the unsatisfiability of a concept in the knowledge base, i.e., the emptiness of the concept. For
example, the entailment of the axiom \(C \sqsubseteq D \) may be tested by checking the satisfiability of the concept \(C \sqcap \neg D \).

3 The DISPONTE Semantics

DISPONTE (Riguzzi et al. 2012) applies the distribution semantics (Sato 1995) of probabilistic logic programming to DLs. A program following this semantics defines a probability distribution over normal logic programs called worlds. Then the distribution is extended to queries and the probability of a query is obtained by marginalizing the joint distribution of the query and the programs.

In DISPONTE, a probabilistic knowledge base \(\mathcal{K} \) is a set of certain axioms or probabilistic axioms in which each axiom is independent evidence. Certain axioms take the form of regular DL axioms while probabilistic axioms are \(p :: E \) where \(p \) is a real number in \([0, 1]\) and \(E \) is a DL axiom.

The idea of DISPONTE is to associate independent Boolean random variables to the probabilistic axioms. To obtain a world, we include every formula obtained from a certain axiom. For each probabilistic axiom, we decide whether to include it or not in \(w \). A world therefore is a non probabilistic KB that can be assigned a semantics in the usual way. A query is entailed by a world if it is true in every model of the world.

The probability \(p \) can be interpreted as an epistemic probability, i.e., as the degree of our belief in axiom \(E \). For example, a probabilistic concept membership axiom \(p :: C \) means that we have degree of belief \(p \) in \(C(a) \). A probabilistic concept inclusion axiom of the form \(p :: C \sqsubseteq D \) represents our belief in the truth of \(C \sqsubseteq D \) with probability \(p \).

Formally, an atomic choice is a couple \((E_i, k)\) where \(E_i \) is the \(i \)th probabilistic axiom and \(k \in \{0, 1\} \). \(k \) indicates whether \(E_i \) is chosen to be included in a world \((k = 1)\) or not \((k = 0)\). A composite choice \(\kappa \) is a consistent set of atomic choices, i.e., \((E_i, k) \in \kappa, (E_i, m) \in \kappa \) implies \(k = m \) (only one decision is taken for each formula). The probability of a composite choice \(\kappa \) is \(p(\kappa) = \prod_{i \in \kappa} p_i \prod_{(E_i, 0) \in \kappa} (1 - p_i) \), where \(p_i \) is the probability associated with axiom \(E_i \). A selection \(\sigma \) is a total composite choice, i.e., it contains an atomic choice \((E_i, k)\) for every probabilistic axiom of the probabilistic KB. A selection \(\sigma \) identifies a theory \(w_\sigma \) called a world in this way: \(w_\sigma = C \cup \{E_i | (E_i, 1) \in \sigma\} \) where \(C \) is the set of certain axioms. Let us indicate with \(\mathcal{S}_C \) the set of all selections and with \(\mathcal{W}_C \) the set of all worlds. The probability of a world \(w_\sigma \) is \(P(w_\sigma) = p(\sigma) = \prod_{(E_i,1) \in \sigma} p_i \prod_{(E_i,0) \in \sigma} (1 - p_i) \). \(P(w_\sigma) \) is a probability distribution over worlds, i.e., \(\sum_{w \in \mathcal{W}_C} P(w) = 1 \).

We can now assign probabilities to queries. Given a world \(w \), the probability of a query \(Q \) is defined as \(P(Q | w) = 1 \) if \(w \models Q \) and 0 otherwise. The probability of a query can be defined by marginalizing the joint probability of the query and the worlds, i.e., \(P(Q) = \sum_{w \in \mathcal{W}_C} P(Q, w) = \sum_{w \in \mathcal{W}_C} P(Q | w)p(w) = \sum_{w \in \mathcal{W}_C: w \models Q} P(w) \).

Example 3.1

Consider the following KB, inspired by the people+pets ontology (Patel-Schneider et al. 2003):

\[
0.5 :: \exists hasAnimal.Pet \sqsubseteq NatureLover \quad 0.6 :: \Cat \sqsubseteq Pet
\]

\[(kevin, tom) :: hasAnimal \quad (kevin, fluffy) :: hasAnimal \quad tom :: \Cat \quad fluffy :: \Cat\]

The KB indicates that the individuals that own an animal which is a pet are nature lovers with a 50% probability and that kevin has the animals fluffy and tom. Fluffy and tom are cats and cats are pets with probability 60%. We associate a Boolean variable to each axiom as follow
\[F_1 = \exists \text{hasAnimal}.\text{Pet} \subseteq \text{NatureLover} \]
\[F_2 = (\text{kevin}, \text{fluffy}) : \text{hasAnimal} \]
\[F_3 = (\text{kevin}, \text{tom}) : \text{hasAnimal} \]
\[F_4 = \text{fluffy} : \text{Cat} \]
\[F_5 = \text{tom} : \text{Cat} \]
\[F_6 = \text{Cat} \subseteq \text{Pet}. \]

The KB has four worlds and the query axiom \(Q = \text{kevin} : \text{NatureLover} \) is true in one of them, the one corresponding to the selection \((F_1, 1), (F_2, 1)\). The probability of the query is \(P(Q) = 0.5 \cdot 0.6 = 0.3 \).

Example 3.2

Sometimes we have to combine knowledge from multiple, untrusted sources, each one with a different reliability. Consider a KB similar to the one of Example 3.1 but where we have a single cat, fluffy.

\[\exists \text{hasAnimal}.\text{Pet} \subseteq \text{NatureLover} \quad (\text{kevin}, \text{fluffy}) : \text{hasAnimal} \quad \text{Cat} \subseteq \text{Pet} \]

and there are two sources of information with different reliability that provide the information that fluffy is a cat. On one source the user has a degree of belief of 0.4, i.e., he thinks it is correct with a 40% probability, while on the other source he has a degree of belief 0.3. The user can reason on this knowledge by adding the following statements to his KB:

\[0.4 :: \text{fluffy} : \text{Cat} \quad 0.3 :: \text{fluffy} : \text{Cat} \]

The two statements represent independent evidence on fluffy being a cat. We associate \(F_1 \) (\(F_2 \)) to the first (second) probabilistic axiom.

The query axiom \(Q = \text{kevin} : \text{NatureLover} \) is true in 3 out of the 4 worlds, those corresponding to the selections \((F_1, 1), (F_2, 1)\), \((F_1, 1), (F_2, 0)\), \((F_1, 0), (F_2, 1)\). So \(P(Q) = 0.4 \cdot 0.3 + 0.4 \cdot 0.7 + 0.6 \cdot 0.3 = 0.58 \). This is reasonable if the two sources can be considered as independent. In fact, the probability comes from the disjunction of two independent Boolean random variables with probabilities respectively 0.4 and 0.3: \(P(Q) = P(X_1 \lor X_2) = P(X_1) + P(X_2) - P(X_1 \land X_2) = P(X_1) + P(X_2) - P(X_1)P(X_2) = 0.4 + 0.3 - 0.4 \cdot 0.3 = 0.58 \)

4 Querying KBs

Traditionally, a reasoning algorithm decides whether an axiom is entailed or not by a KB by refutation: the axiom \(E \) is entailed if \(\neg E \) has no model in the KB. Besides deciding whether an axiom is entailed by a KB, we want to find also explanations for the axiom.

The problem of finding explanations for a query has been investigated by various authors (Schlobach and Cornet 2003, Kalvanpur et al. 2005, Kalyanpur 2006, Kalvanpur et al. 2007, Halaschek-Wiener et al. 2006). It was called axiom pinpointing in (Schlobach and Cornet 2003) and considered as a non-standard reasoning service useful for tracing derivations and debugging ontologies. In particular, in (Schlobach and Cornet 2003) the authors define minimal axiom sets (MinAs for short).

Definition 4.1 (MinA)

Let \(K \) be a knowledge base and \(Q \) an axiom that follows from it, i.e., \(K \models Q \). We call a set \(M \subseteq K \) a minimal axiom set or MinA for \(Q \) in \(K \) if \(M \models Q \) and it is minimal w.r.t. set inclusion.

The problem of enumerating all MinAs is called MIN-A-ENUM. ALL-MINAS(\(Q, K \)) is the set of all MinAs for query \(Q \) in knowledge base \(K \). Reasoners such as Pellet solve the MIN-A-ENUM problem by finding a single MinA using a tableau algorithm and then applying the hitting set (Reiter 1987) algorithm for finding all the others.

A tableau is a graph where each node represents an individual \(a \) and is labeled with the set of concepts \(L(a) \) it belongs to. Each edge \(\langle a, b \rangle \) in the graph is labeled with the set
of roles to which the couple \((a, b)\) belongs. Then, a set of consistency preserving tableau expansion rules are repeatedly applied until a clash (i.e., a contradiction) is detected or a clash-free graph is found to which no more rules are applicable. A clash is for example a couple \((C, a)\) where \(C\) and \(\neg C\) are present in the label of a node, i.e. \(C, \neg C \subseteq E(a)\).

Some expansion rules are non-deterministic, i.e., they generate a finite set of tableaux. Thus the algorithm keeps a set of tableaux that is consistent if there is any tableau in it that is consistent, i.e., that is clash-free. Each time a clash is detected in a tableau \(G\), the algorithm stops applying rules to \(G\). Once every tableau in \(T\) contains a clash or no more expansion rules can be applied to it, the algorithm terminates. If all the tableaux in the final set \(T\) contain a clash, the algorithm returns unsatisfiable as no model can be found. Otherwise, any one clash-free completion graph in \(T\) represents a possible model for the concept and the algorithm returns satisfiable. The hitting set algorithm is a black box method: it repeatedly removes an axiom from the KB and then computes again a MinA recording all the different MinAs so found.

\(\text{MIN-A-ENUM}\) is required to answer queries to KBs following the DISPONTE semantics. To compute the probability of a query, the explanations must be made mutually exclusive, so that the probability of each individual explanation is computed and summed with the others. This can be done by exploiting a splitting algorithm as shown in (Poole 2000). Alternatively, we can assign independent Boolean random variables to the axioms contained in the explanations and defining the Disjunctive Normal Form (DNF) Boolean formula \(f_K\) which models the set of explanations. Thus \(f_K(X) = \bigvee_{\kappa \in K} \bigwedge_{(E_i, 1)} X_i \bigwedge_{(E_i, 0)} \neg X_i\) where \(X = \{X_i | (E_i, k) \in \kappa, \kappa \in K\}\) is the set of Boolean random variables. We can now translate \(f_K\) to a Binary Decision Diagram (BDD), from which we can compute the probability of the query with a dynamic programming algorithm that is linear in the size of the BDD.

5 The algorithms TRILL and TRILLP

TRILL (Zese et al. 2013) implements the tableau algorithm using Prolog. In this way, we do not have to implement a search strategy, such as the hitting set algorithm, because the management of the non-determinism is demanded to Prolog. TRILL takes as input an OWL DL ontology translated into Prolog facts by using the Thea2 library (Vassiliadis et al. 2009). For example, a subclass axiom \(\textit{Cat} \sqsubseteq \textit{Pet}\) is translated into \(\text{subClass}('\textit{Cat}', '\textit{Pet}')\) while for more complex axioms, Thea2 uses Prolog lists, so the axiom \(\textit{NatureLover} \equiv \textit{PetOwner} \sqcup \textit{GardenOwner}\) is translated into \(\text{equivalentClasses}(['\textit{NatureLover}', \text{unionOf}(['\textit{PetOwner}', '\textit{GardenOwner}'])])\).

TRILL builds a tableau following the tableau algorithm. The non-deterministic rules are treated differently from the deterministic ones. While the latter ones are implemented by predicates that take as input a tableau and return a single tableau, the former ones are implemented by predicates that take as input a tableau but return a list of tableaux from which one is non-deterministically chosen. The computation of \(\text{ALM-MINAS}(Q, \mathcal K)\) is performed by simply calling \texttt{findall/3} over the tableau predicate.

A new version of TRILL, called TRILLP, resolves the axiom pinpointing problem by computing a pinpointing formula (Baader and Peñaloza 2010a; Baader and Peñaloza 2010b) instead of a set of MinAs. To define the pinpointing formula we first have to associate a Boolean variable to each axiom of the KB \(\mathcal K\). The pinpointing formula is a monotone
Boolean formula on these variables. This formula compactly encodes the set of all MinAs. Let assume that each axiom E of a KB K is associated with the propositional variable $\text{var}(E)$. The set of all propositional variables is indicated with $\text{var}(K)$. A valuation ν of a monotone Boolean formula is the set of propositional variables that are true. For a valuation $\nu \subseteq \text{var}(K)$, let $K_\nu := \{ t \in K \mid \text{var}(t) \in \nu \}$.

Definition 5.1 (Pinpointing formula)
Given a query Q and a KB K, a monotone Boolean formula ϕ over $\text{var}(K)$ is called a pinpointing formula for Q if for every valuation $\nu \subseteq \text{var}(K)$ it holds that $K_\nu \models Q$ if ν satisfies ϕ.

In Lemma 2.4 of (Baader and Peñaloza 2010b), the authors proved that we can obtain all MinAs from a pinpointing formula by transforming the formula into DNF and removing disjuncts implying other disjuncts. From this formula, the construction of BDD can be performed as for MinAs. For formal definitions see (Baader and Peñaloza 2010a; Baader and Peñaloza 2010b).

Example 5.1 (Pinpointing formula)
Consider the KB of Example 3.1 with the same association between Boolean variables and axioms. Let $Q = \text{kevin: NatureLover}$ be the query, then $\text{All-MinAs}(Q, K) = \{ \{ F_2, F_4, F_6, F_1 \}, \{ F_3, F_5, F_6, F_1 \} \}$, while the pinpointing formula is \((F_2 \land F_4) \lor (F_3 \land F_5)) \land F_6 \land F_1\). In order to build the BDDs and compute the associated probabilities, TRILL and TRILLP exploit a Prolog library of the cplint suite (Riguzzi 2009). The code of TRILL and TRILLP is available at https://sites.google.com/a/unife.it/ml/trill.

6 Related Work

DL reasoners written in Prolog do not need to implement a backtracking algorithm but can exploit Prolog backtracking facilities for performing the search. This has been observed in various works. Beckert and Posegga (1995) proposed a tableau reasoner in Prolog for FOL based on variable-free semantic tableaux, but it is not tailored to DLs. Meissner (2004) presented the implementation of a Prolog reasoner for the DL ALCN. Herchenröder (2006) improved it by implementing heuristic search techniques to reduce the running time. Faizi (2011) added to its work the possibility of returning explanations for queries w.r.t. ALC KBs. Hustadt et al. (2008) presented the KAON2 algorithm that exploits basic superposition, a refutational theorem proving method for FOL with equality and a new inference rule, called decomposition, to reduce a SHIQ KB into a disjunctive datalog program. Lukácsy and Széredi (2009) presented DLog, that is an ABox reasoning algorithm for the SHIQ language. It allows to store the content of the ABox externally in a database and to answer ABox queries by transforming the KB into a Prolog program. TRILL and TRILLP differ from these works for the considered DL and, in particular, from DLog for the capability of answering general queries.

Bruynooghe et al. (2010) presented FOProblog that is based on Problog, in which a program contains a set of probabilistic facts, i.e. facts annotated with probabilities, and a set of general clauses which can have positive and negative probabilistic facts in their body. Each fact is assumed to be probabilistically independent. It follows the distribution
semantics and exploits BDDs to compute the probability of queries. FOProblog is a reasoner for FOL that is not tailored to DLs, so the algorithm could be suboptimal. It does not exploit a tableau algorithm and cannot manage probabilistic facts which are annotated with more than one probability value.

A different approach is the one of Ricca et al. (2009) that presented OntoDLV, a system for reasoning on logic-based ontology representation language, called OntoDLP. OntoDLP is an extension of (disjunctive) ASP and can interoperate with OWL. OntoDLV rewrites the OWL KB into the OntoDLP language, can retrieve information directly from external OWL Ontologies and answers queries by using ASP.

BUNDLE (Riguzzi et al. 2013a) is a probabilistic reasoner that computes the probability of queries from probabilistic KBs that follow the DISPONTE semantics. It is based on Pellet and is completely written in Java. It exploits a modified version of Pellet for finding the All-MINAs set and then it transcribes it into a BDD from which it computes the probability of the query. Similarly to BUNDLE, PRONTO (Klinov 2008) is based on Pellet and performs inference on P-SHIQ(D) KBs in which the probabilistic part contains conditional constraints of the form \((D|C)[l, u]\) that informally mean “generally, if an object belongs to \(C\), then it belongs to \(D\) with a probability in the interval \([l, u]\)”. P-SHIQ(D) (Lukasiewicz 2008) uses probabilistic lexicographic entailment from probabilistic default reasoning and allows both terminological and assertional probabilistic knowledge about instances of concepts and roles. P-SHIQ(D) is based on Nilsson’s probabilistic logic (Nilsson 1986) in which the probabilistic interpretation \(Pr\) defines a probability distribution over the set of interpretations \(Int\) instead of a probability distribution over theories. The probability of a logical formula \(F\) according to \(Pr\), denoted \(Pr(F)\), is the sum of all \(Pr(I)\) such that \(I \in Int\) and \(I \models F\).

7 Experiments

We did several experiments in order to evaluate the performances of the algorithms we have implemented. Here we report a comparison between the performances of TRILL, TRILL\(^P\) and BUNDLE when computing probability for queries. We used four different knowledge bases of various complexity: 1) BRCA\(^1\) models the risk factor of breast cancer; 2) an extract of the DBPedia\(^2\) ontology obtained from Wikipedia; 3) Biopax level 3\(^3\) models metabolic pathways; 4) Vicodi\(^4\) contains information on European history.

For the tests, we used a version of the DBPedia and Biopax KBs without the ABox, a version of the BRCA with an ABox containing 1 individual and a version of Vicodi with an ABox containing 19 individuals. To each KB, we added 50 probabilistic axioms. For each datasets we randomly created 100 different queries. In particular, for the DBPedia and Biopax datasets we created 100 subclass-of queries while for the other KBs we created 80 subclass-of and 20 instance-of queries. For generating the subclass-of queries, we randomly selected two classes that are connected in the hierarchy of classes contained in the ontology, so that each query had at least one explanation. For the instance-of

1. http://www2.cs.man.ac.uk/~klinov/pronto/brc/cancer_cc.owl
Tables 1: Average times for computing the probability of queries in seconds.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Avg. N. MinAs</th>
<th>TRILL time (s)</th>
<th>TRILLP time (s)</th>
<th>BUNDLE time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRCA</td>
<td>6.49</td>
<td>27.87</td>
<td>4.74</td>
<td>6.96</td>
</tr>
<tr>
<td>DBPedia</td>
<td>16.32</td>
<td>51.56</td>
<td>4.67</td>
<td>3.79</td>
</tr>
<tr>
<td>Biopax level 3</td>
<td>3.92</td>
<td>0.12</td>
<td>0.12</td>
<td>1.85</td>
</tr>
<tr>
<td>Vicodi</td>
<td>1.02</td>
<td>0.19</td>
<td>0.19</td>
<td>1.12</td>
</tr>
</tbody>
</table>

queries, we randomly selected an individual a and a class to which a belongs by following the hierarchy of the classes starting from the class to which a is instantiated in the KB.

Table 1 shows, for each ontology, the average number of different MinAs computed and the average time in seconds that TRILL, TRILLP and BUNDLE took for answering the queries. In particular, the BRCA and the version of DBPedia that we used contain a large number of subclass axioms between complex concepts. These preliminary tests show that both TRILL and TRILLP performances can sometimes be better than BUNDLE, even if they lack all the optimizations that BUNDLE inherits from Pellet. This represents evidence that a Prolog implementation of a Semantic Web tableau reasoner is feasible and that may lead to a practical system. Moreover, TRILLP presents an improvement of the execution time with respect to TRILL when more MinAs are present.

8 Open Issues and expected achievement

Our work aims at developing fast algorithms for performing inference over probabilistic DISPONTE semantics. Section 5 shows that TRILL and TRILLP can compute the explanations for a query and its probability w.r.t. a $SHIQ^+(D)$ and an ALC probabilistic KB respectively. For the future we plan to improve the performances of both algorithms.

We are also studying the problem of lifted inference for probabilistic logic programming using lifted variable elimination. We are adapting the Generalized Counting First Order Variable Elimination (GC-FOVE) algorithm presented in [Taghipour et al. 2013] to probabilistic logic programming under the distribution semantics. To this purpose, we are developing the system LP2 that extends GC-FOVE by introducing two new operators, heterogeneous sum and heterogeneous multiplication. This work will be presented at the ICLP 2014 main conference.

A second line of research is the problem of learning the parameters and the structure of a DISPONTE KB. Along this line, in [Riguzzi et al. 2013b] we presented a learning algorithm, called EDGE, that learns the parameters by taking as input a DL theory and a number of examples that are usually concept assertions divided into positive and negative examples. EDGE first computes, for each example, the BDD encoding its explanations, then it executes an Expectation-Maximization (EM) algorithm, in which the functions Expectation and Maximization are repeatedly applied until the log-likelihood of the examples reaches a local maximum. Moreover, we are working on extending EDGE in order to learn also the structure of a DISPONTE KB together with the parameters by adapting the CELOE algorithm [Lehmann et al. 2011].
9 Conclusions

In this paper we presented two algorithms TRILL and TRILLP for reasoning on DISPONTE KBs which are written in Prolog. The experiments show that Prolog is a viable language for implementing DL reasoning algorithms and that the performances of the two presented algorithms are comparable with those of a state-of-art reasoner.

10 Acknowledgements

This work was started by the Artificial Intelligence research group of the engineering department of the University of Ferrara. We would personally thank my colleagues and friends (in alphabetical order) Elena Bellodi, Evelina Lamma and Fabrizio Riguzzi.

References

R. Zese

Shearer, R., Motik, B., and Horrocks, I. 2008. Hermit: A highly-efficient owl reasoner. In OWLED.

