@article{ZesBelRig18-AMAI-IJ, author = {Riccardo Zese and Elena Bellodi and Fabrizio Riguzzi and Giuseppe Cota and Evelina Lamma }, title = {Tableau Reasoning for Description Logics and its Extension to Probabilities}, journal = {Annals of Mathematics and Artificial Intelligence}, publisher = {Springer}, copyright = {Springer}, year = {2018}, issn-print = {1012-2443}, issn-online = {1573-7470}, url = {http://mcs.unife.it/~friguzzi/Papers/ZesBelRig-AMAI16.pdf}, pdf = {http://rdcu.be/kONG}, doi = {10.1007/s10472-016-9529-3}, abstract = { The increasing popularity of the Semantic Web drove to a wide- spread adoption of Description Logics (DLs) for modeling real world domains. To help the diffusion of DLs, a large number of reasoning algorithms have been developed. Usually these algorithms are implemented in procedural languages such as Java or C++. Most of the reasoners exploit the tableau algorithm which features non-determinism, that is not easily handled by those languages. Prolog directly manages non-determinism, thus is a good candidate for dealing with the tableau's non-deterministic expansion rules. We present TRILL, for "Tableau Reasoner for descrIption Logics in pro- Log", that implements a tableau algorithm and is able to return explanations for queries and their corresponding probability, and TRILLP , for "TRILL powered by Pinpointing formulas", which is able to compute a Boolean for- mula representing the set of explanations for a query. Reasoning on real world domains also requires the capability of managing probabilistic and uncertain information. We show how TRILL and TRILLP can be used to compute the probability of queries to knowledge bases following DISPONTE semantics. Experiments comparing these with other systems show the feasibility of the approach.}, keywords = { Description Logics, Tableau, Prolog, Semantic Web}, scopus = {2-s2.0-84990986085} }

@incollection{RigSwi18-WFS-BC, title = {Probabilistic Logic Programming Under the Distribution Semantics}, author = {Fabrizio Riguzzi and Theresa Swift}, year = {2018}, editor = {Michael Kifer and Yanhong A. Liu}, booktitle = {Declarative Logic Programming: Theory, Systems, and Applications}, publisher = {Association for Computing Machinery and Morgan \& Claypool}, pdf = {http://mcs.unife.it/~friguzzi/Papers/RigSwi-WFS16.pdf} }

@article{GavLam18-FI-IJ, author = {Gavanelli, Marco and Lamma, Evelina and Riguzzi, Fabrizio and Bellodi, Elena and Zese, Riccardo and Cota, Giuseppe}, title = {Reasoning on Datalog+- Ontologies with Abductive Logic Programming}, year = {2018}, journal = {Fundamenta Informaticae}, volume = {159}, doi = {10.3233/FI-2018-1658}, pages = {65--93}, pdf = {http://mcs.unife.it/~friguzzi/Papers/GavLam-FI18.pdf} }

@incollection{NguRig17-IMAKE-BC, author = {Arnaud {Nguembang Fadja} and Fabrizio Riguzzi}, title = {Probabilistic Logic Programming in Action}, booktitle = {Towards Integrative Machine Learning and Knowledge Extraction: BIRS Workshop, Banff, AB, Canada, July 24-26, 2015, Revised Selected Papers}, year = {2017}, editor = {Andreas Holzinger and Randy Goebel and Massimo Ferri and Vasile Palade}, publisher = {Springer}, address = {Heidelberg, \Germany}, series = {Lecture Notes in Computer Science}, volume = {10344}, copyright = {Springer}, doi = {10.1007/978-3-319-69775-8_5}, pdf = {http://mcs.unife.it/~friguzzi/Papers/NguRig17-IMAKE-BC.pdf}, abstract = {Probabilistic Programming (PP) has recently emerged as an effective approach for building complex probabilistic models. Until recently PP was mostly focused on functional programming while now Probabilistic Logic Programming (PLP) forms a significant subfield. In this paper we aim at presenting a quick overview of the features of current languages and systems for PLP. We first present the basic semantics for probabilistic logic programs and then consider extensions for dealing with infinite structures and continuous random variables. To show the modeling features of PLP in action, we present several examples: a simple generator of random 2D tile maps, an encoding of Markov Logic Networks, the truel game, the coupon collector problem, the one-dimensional random walk, latent Dirichlet allocation and the Indian GPA problem. These examples show the maturity of PLP. }, pages = {89--116}, keywords = {Probabilistic Logic Programming, Probabilistic Logical Inference, Hybrid programs}, scopus = {2-s2.0-85033590324}, issn = {1860-949X}, isbn-print = {978-3-319-69774-1}, isbn-online = {978-3-319-69775-8}, note = {The final publication is available at Springer via \url{http://dx.doi.org/10.1007/978-3-319-69775-8_5}} }

@article{RigCotBel17-IJAR-IJ, author = {Fabrizio Riguzzi and Giuseppe Cota and Elena Bellodi and Riccardo Zese }, title = {Causal Inference in {cplint}}, journal = {International Journal of Approximate Reasoning}, year = {2017}, publisher = {Elsevier}, address = {Amsterdam}, copyright = {Elsevier}, doi = {10.1016/j.ijar.2017.09.007}, pdf = {http://mcs.unife.it/~friguzzi/Papers/RigCotBel-IJAR17.pdf}, url = {https://authors.elsevier.com/a/1VqDB,KD6ZG8M8}, abstract = { cplint is a suite of programs for reasoning and learning with Probabilistic Logic Programming languages that follow the distribution semantics. In this paper we describe how we have extended cplint to perform causal reasoning. In particular, we consider Pearl's do calculus for models where all the variables are measured. The two cplint modules for inference, PITA and MCINTYRE, have been extended for computing the effect of actions/interventions on these models. We also executed experiments comparing exact and approximate inference with conditional and causal queries, showing that causal inference is often cheaper than conditional inference. }, keywords = { Probabilistic Logic Programming, Distribution Semantics, Logic Programs with Annotated Disjunctions, ProbLog, Causal Inference, Statistical Relational Artificial Intelligence }, volume = {91}, pages = {216-232}, month = {December}, number = {Supplement C}, issn = {0888-613X} }

@inproceedings{AlbLamRig17-CILC-NC, author = {Marco Alberti and Evelina Lamma and Fabrizio Riguzzi and Riccardo Zese}, title = {Iterated Fixpoint Well-founded Semantics for Hybrid Knowledge Bases}, booktitle = {Joint Proceedings of the 18th Italian Conference on Theoretical Computer Science and the 32nd Italian Conference on Computational Logic}, eventdate = {26-28 September 2017}, venue = {Naples, Italy}, editor = {{Dario Della Monica} and Aniello Murano and Sasha Rubin and Luigi Sauro}, year = {2017}, series = {CEUR Workshop Proceedings}, address = {Aachen, Germany}, issn = {1613-0073}, publisher = {Sun {SITE} Central Europe}, pages = {248-261}, pdf = {http://ceur-ws.org/Vol-1949/CILCpaper01.pdf}, volume = 1949, abstract = { MKNF-based Hybrid Knowledge Bases (HKBs) integrate Logic Programming (LP) and Description Logics (DLs) offering the combined expressiveness of the two formalisms. In particular, HKB allow to make different closure assumptions for different predicates. HKBs have been given a well-founded semantics in terms of an alternate fixpoint. In this paper we provide an alternative definition of the semantics using an iterated fixpoint. In this way the computation of the well-founded model proceeds uniformly bottom-up, making the semantics easier to understand, to reason with and to automate. We also present slightly different but equivalent versions of our definition. We then discuss the relationships of HKBs with other formalisms. The results show that overall HKBs seem to be those that more tightly integrate LP and DL, even if there exist incomparable languages such as the recent FO(ID) formalism.}, keywords = {Hybrid Knowledge Bases, MKNF, Well-foudned semantics, Description Logics} }

@inproceedings{NguRig17-ILP-IC, title = {Lifted Discriminative Learning of Probabilistic Logic Programs}, author = {Arnaud {Nguembang Fadja} and Fabrizio Riguzzi}, booktitle = {27th International Conference on Inductive Logic Programming, ILP 2017}, year = {2017}, editor = {Nicolas Lachiche and Christel Vrain}, pdf = {https://ilp2017.sciencesconf.org/data/pages/ILP_2017_paper_10.pdf} }

@inproceedings{AlbLamRig17-PLP-IW, author = {Marco Alberti and Evelina Lamma and Fabrizio Riguzzi and Riccardo Zese}, title = {A Distribution Semantics for non-{DL}-Safe Probabilistic Hybrid Knowledge Bases}, booktitle = {4th International Workshop on Probabilistic logic programming, PLP 2017}, editor = {Christian {Theil Have} and Riccardo Zese}, year = {2017}, pdf = {http://ceur-ws.org/Vol-1916/paper4.pdf}, volume = 1916, series = {CEUR Workshop Proceedings}, address = {Aachen, Germany}, issn = {1613-0073}, publisher = {Sun {SITE} Central Europe}, pages = {40-50}, scopus = {2-s2.0-85030093850}, abstract = {Logic Programming languages and Description Logics are based on different domain closure assumptions, closed and the open world assumption, respectively. Since many domains require both these assumptions, the combination of LP and DL have become of foremost importance. An especially successful approach is based on Minimal Knowledge with Negation as Failure (MKNF), whose semantics is used to define Hybrid KBs, composed of logic programming rules and description logic axioms. Following such idea, we have proposed an approach for defining DL-safe Probabilistic Hybrid Knowledge Bases, where each disjunct in the head of LP clauses and each DL axiom is annotated with a probability value, following the well known distribution semantics. In this paper, we show that this semantics can be unintuitive for non-DL-safe PHKBs, and we propose a new semantics that coincides with the previous one if the PHKB is DL-safe.}, keywords = {Hybrid Knowledge Bases, MKNF, Distribution Semantics} }

@inproceedings{NguLamRig17-PLP-IW, author = {Arnaud {Nguembang Fadja} and Evelina Lamma and Fabrizio Riguzzi}, title = {Deep Probabilistic Logic Programming}, booktitle = {Proceedings of the 4th International Workshop on Probabilistic logic programming, (PLP 2017)}, editor = {Christian {Theil Have} and Riccardo Zese}, year = {2017}, pdf = {http://ceur-ws.org/Vol-1916/paper1.pdf}, volume = 1916, series = {CEUR Workshop Proceedings}, address = {Aachen, Germany}, issn = {1613-0073}, publisher = {Sun {SITE} Central Europe}, pages = {3-14}, abstract = {Probabilistic logic programming under the distribution semantics has been very useful in machine learning. However, inference is expensive so machine learning algorithms may turn out to be slow. In this paper we consider a restriction of the language called hierarchical PLP in which clauses and predicates are hierarchically organized. In this case the language becomes truth-functional and inference reduces to the evaluation of formulas in the product fuzzy logic. Programs in this language can also be seen as arithmetic circuits or deep neural networks and inference can be reperformed quickly when the parameters change. Learning can then be performed by EM or backpropagation.}, keywords = {Probabilistic Logic Programming, Distribution Semantics, Deep Neural Networks, Arithmetic Circuits}, scopus = {2-s2.0-85030091907}, venue = {Orleans, FR}, eventdate = {2017-09-07} }

@inproceedings{ZamCanRig17-IMW-IW, author = {Cristian Zambelli and Giuseppe Cancelliere and Fabrizio Riguzzi and Evelina Lamma and Piero Olivo and Alessia Marelli and Rino Micheloni}, booktitle = {2017 IEEE International Memory Workshop (IMW)}, title = {Characterization of {TLC 3D-NAND} Flash Endurance through Machine Learning for {LDPC} Code Rate Optimization}, year = {2017}, pages = {1-4}, keywords = {Clustering algorithms;Computer architecture;Error correction codes;Flash memories;Optimization;Parity check codes;Reliability}, doi = {10.1109/IMW.2017.7939074}, month = {May}, publisher = {IEEE}, venue = {Monterey, CA, USA}, eventdate = {14-17 May 2017} }

@inproceedings{AlbGavLam17-RR-IC, author = {Alberti, Marco and Gavanelli, Marco and Lamma, Evelina and Riguzzi, Fabrizio and Riccardo, Zese}, editor = {Costantini, Stefania and Franconi, Enrico and Van Woensel, William and Kontchakov, Roman and Sadri, Fariba and Roman, Dumitru}, title = {Dischargeable Obligations in Abductive Logic Programming}, booktitle = {Rules and Reasoning: International Joint Conference, RuleML+RR 2017, London, UK, July 12--15, 2017, Proceedings}, year = {2017}, publisher = {Springer International Publishing}, copyright = {Springer International Publishing AG}, series = {Lecture Notes in Computer Science}, volume = {10364}, address = {Cham}, isbn-print = {978-3-319-61251-5}, isbn-online = {978-3-319-61252-2}, doi = {10.1007/978-3-319-61252-2_2}, pdf = {http://mcs.unife.it/~friguzzi/Papers/AlbGavLam-RR17.pdf}, pages = {7--21}, abstract = { Abductive Logic Programming (ALP) has been proven very effective for formalizing societies of agents, commitments and norms, in particular by mapping the most common deontic operators (obligation, prohibition, permission) to abductive expectations. In our previous works, we have shown that ALP is a suitable framework for representing norms. Normative reasoning and query answering were accommodated by the same abductive proof procedure, named SCIFF. In this work, we introduce a defeasible flavour in this framework, in order to possibly discharge obligations in some scenarios. Abductive expectations can also be qualified as dischargeable, in the new, extended syntax. Both declarative and operational semantics are improved accordingly, and proof of soundness is given under syntax allowedness conditions. The expressiveness and power of the extended framework, named SCIFFD, is shown by modeling and reasoning upon a fragment of the Japanese Civil Code. In particular, we consider a case study concerning manifestations of intention and their rescission (Section II of the Japanese Civil Code).}, keywords = {Abduction, Abductive Logic Programming, Legal Reasoning, Normative Reasoning}, note = {The final publication is available at Springer via \url{http://dx.doi.org/10.1007/978-3-319-61252-2_2}} }

@incollection{RigZesCot17-EKAW-IC, title = {Probabilistic Inductive Logic Programming on the Web}, author = {Fabrizio Riguzzi and Riccardo Zese and Giuseppe Cota}, booktitle = {20th International Conference on Knowledge Engineering and Knowledge Management, {EKAW} 2016; Bologna; Italy; 19 November 2016 through 23 November 2016}, year = {2017}, publisher = {Springer}, address = {Cham}, series = {Lecture Notes in Computer Science}, volume = {10180}, pdf = {http://mcs.unife.it/~friguzzi/Papers/RigZesCot-EKAW16.pdf}, isbn-online = {978-3-319-58694-6}, isbn-print = {978-3-319-58693-9}, pages = {172--175}, scopus = {2-s2.0-85019730114}, doi = {10.1007/978-3-319-58694-6_25}, abstract = {Probabilistic Inductive Logic Programming (PILP) is gaining attention for its capability of modeling complex domains containing uncertain relationships among entities. Among PILP systems, \texttt{cplint} provides inference and learning algorithms competitive with the state of the art. Besides parameter learning, \texttt{cplint} provides one of the few structure learning algorithms for PLP, SLIPCOVER. Moreover, an online version was recently developed, \texttt{cplint} on SWISH, that allows users to experiment with the system using just a web browser. In this demo we illustrate \texttt{cplint} on SWISH concentrating on structure learning with SLIPCOVER. \texttt{cplint} on SWISH also includes many examples and a step-by-step tutorial.}, keywords = {Probabilistic Inductive Logic Programming, Probabilistic Logic Programming, Inductive Logic Programming}, copyright = {Springer International Publishing AG}, note = {The final publication is available at Springer via \url{http://dx.doi.org/10.1007/978-3-319-58694-6_25}}, venue = {Bologna, Italy}, eventdate = {November 19-November 23, 2016} }

@inproceedings{RigLamAlb17-URANIA-IW, title = {Probabilistic Logic Programming for Natural Language Processing }, author = {Fabrizio Riguzzi and Evelina Lamma and Marco Alberti and Elena Bellodi and Riccardo Zese and Giuseppe Cota}, pages = {30--37}, url = {http://ceur-ws.org/Vol-1802/}, pdf = {http://ceur-ws.org/Vol-1802/paper4.pdf}, booktitle = {{URANIA} 2016, Deep Understanding and Reasoning: A Challenge for Next-generation Intelligent Agents, Proceedings of the {AI*IA} Workshop on Deep Understanding and Reasoning: A Challenge for Next-generation Intelligent Agents 2016 co-located with 15th International Conference of the Italian Association for Artificial Intelligence ({AIxIA} 2016)}, year = 2017, editor = {Federico Chesani and Paola Mello and Michela Milano}, volume = 1802, series = {CEUR Workshop Proceedings}, address = {Aachen, Germany}, issn = {1613-0073}, venue = {Genova, Italy}, eventdate = {2016-11-28}, publisher = {Sun {SITE} Central Europe}, copyright = {by the authors}, abstract = {The ambition of Artificial Intelligence is to solve problems without human intervention. Often the problem description is given in human (natural) language. Therefore it is crucial to find an automatic way to understand a text written by a human. The research field concerned with the interactions between computers and natural languages is known under the name of Natural Language Processing (NLP), one of the most studied fields of Artificial Intelligence. In this paper we show that Probabilistic Logic Programming (PLP) is a suitable approach for NLP in various scenarios. For this purpose we use \texttt{cplint} on SWISH, a web application for Probabilistic Logic Programming. \texttt{cplint} on SWISH allows users to perform inference and learning with the framework \texttt{cplint} using just a web browser, with the computation performed on the server.}, keywords = {Probabilistic Logic Programming, Probabilistic Logical Inference, Natural Language Processing}, scopus = {2-s2.0-85015943369} }

@article{AlbBelCot17-IA-IJ, author = {Marco Alberti and Elena Bellodi and Giuseppe Cota and Fabrizio Riguzzi and Riccardo Zese}, title = {\texttt{cplint} on {SWISH}: Probabilistic Logical Inference with a Web Browser}, journal = {Intelligenza Artificiale}, publisher = {IOS Press}, copyright = {IOS Press}, year = {2017}, issn-print = {1724-8035}, issn-online = {2211-0097}, url = {http://mcs.unife.it/~friguzzi/Papers/AlbBelCot-IA17.pdf}, abstract = { \texttt{cplint} on SWISH is a web application that allows users to perform reasoning tasks on probabilistic logic programs. Both inference and learning systems can be performed: conditional probabilities with exact, rejection sampling and Metropolis-Hasting methods. Moreover, the system now allows hybrid programs, i.e., programs where some of the random variables are continuous. To perform inference on such programs likelihood weighting and particle filtering are used. \texttt{cplint} on SWISH is also able to sample goals' arguments and to graph the results. This paper reports on advances and new features of \texttt{cplint} on SWISH, including the capability of drawing the binary decision diagrams created during the inference processes. }, keywords = { Logic Programming, Probabilistic Logic Programming, Distribution Semantics, Logic Programs with Annotated Disjunctions, Web Applications }, volume = {11}, number = {1}, doi = {10.3233/IA-170106}, pages = {47--64}, wos = {WOS:000399736500004} }

@article{BelLamRig17-SPE-IJ, author = {Elena Bellodi and Evelina Lamma and Fabrizio Riguzzi and Riccardo Zese and Giuseppe Cota}, title = {A web system for reasoning with probabilistic {OWL}}, journal = {Software: Practice and Experience}, publisher = {Wiley}, copyright = {Wiley}, year = {2017}, doi = {10.1002/spe.2410}, issn = {1097-024X}, month = {January}, pages = {125--142}, volume = {47}, number = {1}, scopus = {2-s2.0-84992412060}, url = {http://mcs.unife.it/~friguzzi/Papers/BelLamRig-SPE16.pdf}, abstract = { We present the web application TRILL on SWISH, which allows the user to write probabilistic Description Logic (DL) theories and compute the probability of queries with just a web browser. Various probabilistic extensions of DLs have been proposed in the recent past, since uncertainty is a fundamental component of the Semantic Web. We consider probabilistic DL theories following our DISPONTE semantics. Axioms of a DISPONTE Knowledge Base (KB) can be annotated with a probability and the probability of queries can be computed with inference algorithms. TRILL is a probabilistic reasoner for DISPONTE KBs that is implemented in Prolog and exploits its backtracking facilities for handling the non-determinism of the tableau algorithm. TRILL on SWISH is based on SWISH, a recently proposed web framework for logic programming, based on various features and packages of SWI-Prolog (e.g., a web server and a library for creating remote Prolog engines and posing queries to them). TRILL on SWISH also allows users to cooperate in writing a probabilistic DL theory. It is free, open, and accessible on the Web at the url: \trillurl; it includes a number of examples that cover a wide range of domains and provide interesting Probabilistic Semantic Web applications. By building a web-based system, we allow users to experiment with Probabilistic DLs without the need to install a complex software stack. In this way we aim to reach out to a wider audience and popularize the Probabilistic Semantic Web. }, keywords = { Semantic Web, Web Applications, Description Logics, Probabilistic Description Logics, SWI-Prolog, Logic Programming } }

@article{RigBelZes17-IJAR-IJ, author = {Fabrizio Riguzzi and Elena Bellodi and Riccardo Zese and Giuseppe Cota and Evelina Lamma }, title = {A Survey of Lifted Inference Approaches for Probabilistic Logic Programming under the Distribution Semantics}, journal = {International Journal of Approximate Reasoning}, year = {2017}, publisher = {Elsevier}, address = {Amsterdam}, copyright = {Elsevier}, doi = {10.1016/j.ijar.2016.10.002}, pdf = {http://authors.elsevier.com/a/1Tw7F,KD6ZCKEe}, url = {http://mcs.unife.it/~friguzzi/Papers/RigBelZes-IJAR17.pdf}, volume = {80}, number = {Supplement C}, issn = {0888-613X}, pages = {313--333}, month = {January}, abstract = { Lifted inference aims at answering queries from statistical relational models by reasoning on populations of individuals as a whole instead of considering each individual singularly. Since the initial proposal by David Poole in 2003, many lifted inference techniques have appeared, by lifting different algorithms or using approximation involving different kinds of models, including parfactor graphs and Markov Logic Networks. Very recently lifted inference was applied to Probabilistic Logic Programming (PLP) under the distribution semantics, with proposals such as LP2 and Weighted First-Order Model Counting (WFOMC). Moreover, techniques for dealing with aggregation parfactors can be directly applied to PLP. In this paper we survey these approaches and present an experimental comparison on five models. The results show that WFOMC outperforms the other approaches, being able to exploit more symmetries. }, keywords = {Probabilistic Logic Programming, Lifted Inference, Variable Elimination, Distribution Semantics, ProbLog, Statistical Relational Artificial Intelligence }, scopus = {2-s2.0-84992199737}, wos = {WOS:000391080100020} }

@article{Rig17-MNa-RE, author = {Fabrizio Riguzzi}, title = {Review of {K\"otzing, Timo; Palenta, Raphaela A map of update constraints in inductive inference. Theoret. Comput. Sci. 650 (2016), 4--24. }}, journal = {Mathematical Reviews}, publisher = {American Mathematical Society}, copyright = {American Mathematical Society}, year = {2017}, month = {March}, issn = {2167-5163}, mrnumber = {MR3553781}, mrreviewer = {Fabrizio Riguzzi}, url = {http://www.ams.org/mathscinet-getitem?mr=3553781 } }

@inproceedings{GavLamRig17-JURISIN-IC, author = {Gavanelli, Marco and Lamma, Evelina and Riguzzi, Fabrizio and Bellodi, Elena and Riccardo, Zese and Cota, Giuseppe}, editor = {Otake, Mihoko and Kurahashi, Setsuya and Ota, Yuiko and Satoh, Ken and Bekki, Daisuke}, title = {Abductive Logic Programming for Normative Reasoning and Ontologies}, booktitle = {New Frontiers in Artificial Intelligence: JSAI-isAI 2015 Workshops, LENLS, JURISIN, AAA, HAT-MASH, TSDAA, ASD-HR, and SKL, Kanagawa, Japan, November 16-18, 2015, Revised Selected Papers}, year = {2017}, publisher = {Springer International Publishing}, copyright = {Springer International Publishing AG}, series = {Lecture Notes in Computer Science}, volume = {10091}, address = {Cham}, pages = {187--203}, isbn-online = {978-3-319-50953-2}, isbn-print = {978-3-319-50952-5}, doi = {10.1007/978-3-319-50953-2_14}, scopus = {2-s2.0-85018397999} }

@article{RigBelLam16-SPE-IJ, author = {Fabrizio Riguzzi and Elena Bellodi and Evelina Lamma and Riccardo Zese and Giuseppe Cota}, title = {Probabilistic Logic Programming on the Web}, journal = {Software: Practice and Experience}, publisher = {Wiley}, copyright = {Wiley}, year = {2016}, issn = {1097-024X}, url = {http://mcs.unife.it/~friguzzi/Papers/RigBelLam-SPE16.pdf}, abstract = { We present the web application "cplint on SWISH", that allows the user to write probabilistic logic programs and compute the probability of queries with just a web browser. The application is based on SWISH, a recently proposed web framework for logic programming. SWISH is based on various features and packages of SWI-Prolog, in particular its web server and its Pengine library, that allow to create remote Prolog engines and to pose queries to them. In order to develop the web application, we started from the PITA system which is included in cplint, a suite of programs for reasoning on Logic Programs with Annotated Disjunctions, by porting PITA to SWI-Prolog. Moreover, we modified the PITA library so that it can be executed in a multi-threading environment. Developing "cplint on SWISH" also required modification of the JavaScript SWISH code that creates and queries Pengines. "cplint on SWISH" includes a number of examples that cover a wide range of domains and provide interesting applications of Probabilistic Logic Programming (PLP). By providing a web interface to cplint we allow users to experiment with PLP without the need to install a system, a procedure which is often complex, error prone and limited mainly to the Linux platform. In this way, we aim to reach out to a wider audience and popularize PLP.}, keywords = { Logic Programming, Probabilistic Logic Programming, Distribution Semantics, Logic Programs with Annotated Disjunctions, Web Applications }, doi = {10.1002/spe.2386}, volume = {46}, number = {10}, pages = {1381-1396}, month = {October}, wos = {WOS:000383624900005}, scopus = {2-s2.0-84951829971} }

@inproceedings{Rig16-PLP-IW, title = {Deductive and Inductive Probabilistic Programming (invited talk)}, author = {Fabrizio Riguzzi}, pages = {1--1}, url = {http://ceur-ws.org/Vol-1661/#invited-01}, pdf = {http://ceur-ws.org/Vol-1661/invited-01.pdf}, booktitle = {Proceedings of the 3nd International Workshop on Probabilistic Logic Programming ({PLP})}, year = 2016, editor = {Arjen Hommersom and Samer Abdallah}, volume = 1661, series = {CEUR Workshop Proceedings}, address = {Aachen, Germany}, issn = {1613-0073}, venue = {London, UK}, eventdate = {2016-09-03}, publisher = {Sun {SITE} Central Europe}, copyright = {by the authors}, abstract = {Probabilistic programming (PP) is available in two different variants: imperative/functional and logic. These two variants have complementary strengths and mostly separate communities. In this talk I will discuss how most strengths of inference for imperative/functional PP can be included in PLP. Moreover, I will show that PLP is particularly suitable for inductive reasoning. }, keywords = { Probabilistic Logic Programming, Probabilistic Programming, Distribution Semantics} }

@inproceedings{AlbBelCot16-PLP-IW, title = {Probabilistic Constraint Logic Theories}, author = {Marco Alberti and Elena Bellodi and Giuseppe Cota and Evelina Lamma and Fabrizio Riguzzi and Riccardo Zese}, pages = {15--28}, url = {http://ceur-ws.org/Vol-1661/#paper-02}, pdf = {http://ceur-ws.org/Vol-1661/paper-02.pdf}, booktitle = {Proceedings of the 3nd International Workshop on Probabilistic Logic Programming ({PLP})}, year = 2016, editor = {Arjen Hommersom and Samer Abdallah}, volume = 1661, series = {CEUR Workshop Proceedings}, address = {Aachen, Germany}, issn = {1613-0073}, venue = {London, UK}, eventdate = {2016-09-03}, publisher = {Sun {SITE} Central Europe}, copyright = {by the authors}, abstract = {Probabilistic logic models are used ever more often to deal with the uncertain relations typical of the real world. However, these models usually require expensive inference procedures. Very recently the problem of identifying tractable languages has come to the fore. In this paper we consider the models used by the learning from interpretations ILP setting, namely sets of integrity constraints, and propose a probabilistic version of them. A semantics in the style of the distribution semantics is adopted, where each integrity constraint is annotated with a probability. These probabilistic constraint logic models assign a probability of being positive to interpretations. This probability can be computed in a time that is logarithmic in the number of ground instantiations of violated constraints. This formalism can be used as the target language in learning systems and for declaratively specifying the behavior of a system. In the latter case, inference corresponds to computing the probability of compliance of a system's behavior to the model. }, keywords = { Probabilistic Logic Programming, Distribution Semantics, Constraint Logic Theories}, scopus = {2-s2.0-84987763948} }

@inproceedings{RigBelZes16-ECAI-IC, year = {2016}, booktitle = {22nd European Conference on Artificial Intelligence {ECAI 2016}}, venue = {The Hague, Netherlands}, eventdate = {August 29-September 2, 2016}, editor = {Maria Fox and Gal Kaminka}, title = {Scaling Structure Learning of Probabilistic Logic Programs by MapReduce}, author = {Fabrizio Riguzzi and Elena Bellodi and Riccardo Zese and Giuseppe Cota and Evelina Lamma}, abstract = {Probabilistic Logic Programming is a promising formalism for dealing with uncertainty. Learning probabilistic logic programs has been receiving an increasing attention in Inductive Logic Programming: for instance, the system SLIPCOVER learns high quality theories in a variety of domains. However, SLIPCOVER is computationally expensive, with a running time of the order of hours. In order to apply SLIPCOVER to Big Data, we present SEMPRE, for ``Structure lEarning by MaPREduce", that scales SLIPCOVER by following a MapReduce strategy, directly implemented with the Message Passing Interface. }, keywords = {Probabilistic Logic Programming, Parameter Learning, Structure Learning, MapReduce}, series = {Frontiers in Artificial Intelligence and Applications}, volume = {285}, pages = {1602-1603}, url = {http://ebooks.iospress.nl/volumearticle/44940}, doi = {10.3233/978-1-61499-672-9-1602}, wos = {WOS:000385793700205}, scopus = {2-s2.0-85013029084}, copyright = {CC-BY-NC 4.0}, publisher = {IOS Press} }

@inproceedings{AlbCotRigZes16-AIIA-IC, booktitle = {Proceedings of the 15th Conference of the Italian Association for Artificial Intelligence ({AI*IA2016}), Genova, Italy, 28 November - 1 December 2016}, editor = {Giovanni Adorni and Stefano Cagnoni and Marco Gori and Marco Maratea}, year = {2016}, title = {Probabilistic Logical Inference On the Web}, author = {Marco Alberti and Giuseppe Cota and Fabrizio Riguzzi and Riccardo Zese}, abstract = {cplint on SWISH is a web application for probabilistic logic programming. It allows users to perform inference and learning using just a web browser, with the computation performed on the server. In this paper we report on recent advances in the system, namely the inclusion of algorithms for computing conditional probabilities with exact, rejection sampling and Metropolis-Hasting methods. Moreover, the system now allows hybrid programs, i.e., programs where some of the random variables are continuous. To perform inference on such programs likelihood weighting is used that makes it possible to also have evidence on continuous variables. cplint on SWISH offers also the possibility of sampling arguments of goals, a kind of inference rarely considered but useful especially when the arguments are continuous variables. Finally, cplint on SWISH offers the possibility of graphing the results, for example by drawing the distribution of the sampled continuous arguments of goals.}, publisher = {Springer International Publishing}, address = {Heidelberg, Germany}, series = {Lecture Notes in Computer Science}, volume = {10037}, copyright = {Springer International Publishing AG}, keywords = {Probabilistic Logic Programming, Probabilistic Logical Inference, Hybrid program}, pdf = {http://mcs.unife.it/~friguzzi/Papers/AlbCotRig-AIXIA16.pdf}, doi = {10.1007/978-3-319-49130-1_26}, pages = {351-363}, venue = {Genova, Italy}, eventdate = {November 28-December 1, 2016}, isbn-online = {978-3-319-49129-5}, isbn-print = {978-3-319-49130-1}, issn = {0302-9743}, scopus = {2-s2.0-85006074125}, wos = {WOS:000389797400026}, note = {The final publication is available at Springer via \url{http://dx.doi.org/10.1007/978-3-319-49130-1_26}} }

@inproceedings{AlbLamRigZes16-AIIA-IC, booktitle = {Proceedings of the 15th Conference of the Italian Association for Artificial Intelligence ({AI*IA2016}), Genova, Italy, 28 November - 1 December 2016}, editor = {Giovanni Adorni and Stefano Cagnoni and Marco Gori and Marco Maratea}, year = {2016}, title = {Probabilistic Hybrid Knowledge Bases under the Distribution Semantics}, author = {Marco Alberti and Evelina Lamma and Fabrizio Riguzzi and Riccardo Zese}, abstract = {Since Logic Programming (LP) and Description Logics (DLs) are based on different assumptions (the closed and the open world assumption, respectively), combining them provides higher expressiveness in applications that require both assumptions. Several proposals have been made to combine LP and DLs. An especially successful line of research is the one based on the Lifschitz's logic of Minimal Knowledge with Negation as Failure (MKNF). Motik and Rosati introduced Hybrid knowledge bases (KBs), composed of LP rules and DL axioms, gave them an MKNF semantics and studied their complexity. Knorr et al. proposed a well-founded semantics for Hybrid KBs where the LP clause heads are non-disjunctive, which keeps querying polynomial (provided the underlying DL is polynomial) even when the LP portion is non-stratified. In this paper, we propose Probabilistic Hybrid Knowledge Bases (PHKBs), where the atom in the head of LP clauses and each DL axiom is annotated with a probability value. PHKBs are given a distribution semantics by defining a probability distribution over deterministic Hybrid KBs. The probability of a query being true is the sum of the probabilities of the deterministic KBs that entail the query. Both epistemic and statistical probability can be addressed, thanks to the integration of probabilistic LP and DLs.}, publisher = {Springer International Publishing}, address = {Heidelberg, Germany}, series = {Lecture Notes in Computer Science}, volume = {10037}, copyright = {Springer International Publishing AG}, issn = {0302-9743}, keywords = {Probabilistic Logic Programming, Probabilistic Description Logics, Hybrid Knowledge Bases}, pdf = {http://mcs.unife.it/~friguzzi/Papers/AlbLamRig-AIXIA16.pdf}, doi = {10.1007/978-3-319-49130-1_27}, pages = {364-376}, venue = {Genova, Italy}, scopus = {2-s2.0-85005950065}, wos = {WOS:000389797400027}, eventdate = {November 28-December 1, 2016}, isbn-online = {978-3-319-49129-5}, isbn-print = {978-3-319-49130-1}, note = {The final publication is available at Springer via \url{http://dx.doi.org/10.1007/978-3-319-49130-1_27}} }

@inproceedings{CotZesBel16-ILP-IC, booktitle = {Inductive Logic Programming: 25th International Conference, ILP 2015, Kyoto, Japan, August 20-22, 2015, Revised Selected Papers}, editor = {Katsumi Inoue and Hayato Ohwada and Akihiro Yamamoto}, title = {Distributed Parameter Learning for Probabilistic Ontologies}, author = {Giuseppe Cota and Riccardo Zese and Elena Bellodi and Fabrizio Riguzzi and Evelina Lamma}, pdf = {http://mcs.unife.it/~friguzzi/Papers/CotZesBel-ILP15.pdf}, year = {2016}, publisher = {Springer International Publishing}, address = {Heidelberg, Germany}, series = {Lecture Notes in Computer Science}, volume = {9575}, copyright = {Springer International Publishing Switzerland}, venue = {Kyoto, Japan}, eventdate = {August 20-22, 2015}, pages = {30--45}, isbn-online = {978-3-319-40566-7}, isbn-print = {978-3-319-40565-0}, issn = {0302-9743}, doi = {10.1007/978-3-319-40566-7_3}, abstract = {Representing uncertainty in Description Logics has recently received an increasing attention because of its potential to model real world domains. EDGE for Em over bDds for description loGics param- Eter learning is an algorithm for learning the parameters of probabilistic ontologies from data. However, the computational cost of this algorithm is significant since it may take hours to complete an execution. In this paper we present EDGEMR, a distributed version of EDGE that exploits the MapReduce strategy by means of the Message Passing Interface. Ex- periments on various domains show that EDGEMR signicantly reduces EDGE running time.}, keywords = {Probabilistic Description Logics, Parameter Learning, MapReduce, Message Passing Interface}, note = {The final publication is available at Springer via \url{http://dx.doi.org/10.1007/978-3-319-40566-7_3}} }

@article{Rig16-IJAR-IJ, author = {Fabrizio Riguzzi}, title = {The Distribution Semantics for Normal Programs with Function Symbols}, journal = {International Journal of Approximate Reasoning}, year = {2016}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.ijar.2016.05.005}, volume = {77}, number = {Supplement C}, pages = {1 - 19}, issn = {0888-613X}, month = {October}, pdf = {http://authors.elsevier.com/a/1TBE1,KD6ZCJ~x}, url = {http://mcs.unife.it/~friguzzi/Papers/Rig-IJAR16.pdf}, copyright = {Elsevier}, abstract = {The distribution semantics integrates logic programming and probability theory using a possible worlds approach. Its intuitiveness and simplicity has made it the most widely used semantics for probabilistic logic programming, with successful applications in many domains. When the program has function symbols, the semantics was defined for special cases: either the program has to be definite or the queries must have a finite number of finite explanations. In this paper we show that it is possible to define the semantics for all programs. We also show that this definition coincides with that of Sato and Kameya on positive programs. Moreover, we highlight possible approaches for inference, both exact and approximate. }, keywords = {Distribution Semantics, Function Symbols, ProbLog, Probabilistic Logic Programming }, wos = {WOS:000381164500001}, scopus = {} }

@article{RigCot16-ALP-INVJ, author = {Fabrizio Riguzzi and Giuseppe Cota}, title = {Probabilistic Logic Programming Tutorial}, journal = {The Association for Logic Programming Newsletter}, year = {2016}, volume = {29}, number = {1}, month = {March/April}, publisher = {The Association for Logic Programming}, address = {\London, \UK}, copyright = {by the authors}, url = {http://www.cs.nmsu.edu/ALP/2016/03/probabilistic-logic-programming-tutorial/}, abstract = {Probabilistic Logic Programming (PLP) introduces probabilistic reasoning in Logic Programs in order to represent uncertain information. It is receiving an increased attention due to its applications in particular in the Machine Learning field. In this tutorial we will show how to use cplint on SWISH, a web application for performing inference and learning on user-defined probabilistic logic programs. You will learn how to write a probabilistic logic program processable by cplint on SWISH, how to execute the different types of queries allowed by this application and how to perform learning. cplint on SWISH is based on SWISH, a web framework for Logic Programming, and on cplint , a suite of programs for inference and learning of Logic Programs with annotated disjunctions (LPADs) . It keeps the same syntax of cplint and as cplint it uses Logic Programs with annotated disjunctions (LPADs) as formalism to represent probabilistic logic programs.}, keywords = {Probabilistic Logic Programming, Distribution Semantics, Probabilistic Inductive Logic Programming, Machine Learning } }

@article{BelRigLam16-IDA-IJ, author = {Elena Bellodi and Fabrizio Riguzzi and Evelina Lamma}, title = {Statistical Relational Learning for Workflow Mining}, journal = {Intelligent Data Analysis}, publisher = {IOS Press}, copyright = {IOS Press}, year = {2016}, doi = {10.3233/IDA-160818}, month = {April}, volume = {20}, number = {3}, pages = {515-541}, url = {http://mcs.unife.it/~friguzzi/Papers/BelRigLam-IDA15.pdf}, keywords = {Workflow Mining, Process Mining, Knowledge-based Process Models, Inductive Logic Programming, Statistical Relational Learning, Business Process Management }, abstract = { The management of business processes can support efficiency improvements in organizations. One of the most interesting problems is the mining and representation of process models in a declarative language. Various recently proposed knowledge-based languages showed advantages over graph-based procedural notations. Moreover, rapid changes of the environment require organizations to check how compliant are new process instances with the deployed models. We present a Statistical Relational Learning approach to Workflow Mining that takes into account both flexibility and uncertainty in real environments. It performs automatic discovery of process models expressed in a probabilistic logic. It uses the existing DPML algorithm for extracting first-order logic constraints from process logs. The constraints are then translated into Markov Logic to learn their weights. Inference on the resulting Markov Logic model allows a probabilistic classification of test traces, by assigning them the probability of being compliant to the model. We applied this approach to three datasets and compared it with DPML alone, five Petri net- and EPC-based process mining algorithms and Tilde. The technique is able to better classify new execution traces, showing higher accuracy and areas under the PR/ROC curves in most cases. }, scopus = {2-s2.0-84969808336}, wos = {WOS:000375005000004} }

@article{Rig16-MNg-RE, author = {Fabrizio Riguzzi}, title = {Review of {Echenim, M.; Peltier, N. A superposition calculus for abductive reasoning. J. Automat. Reason. 57, no. 2, 97--134, 2016. }}, journal = {Mathematical Reviews}, publisher = {American Mathematical Society}, copyright = {American Mathematical Society}, year = {2016}, month = {December}, issn = {2167-5163}, mrnumber = {MR3518670}, mrreviewer = {Fabrizio Riguzzi}, url = {http://www.ams.org/mathscinet-getitem?mr=3518670 } }

@article{Rig16-MNf-RE, author = {Fabrizio Riguzzi}, title = {Review of {Kaminski, Benjamin Lucien; Katoen, Joost-Pieter; Matheja, Christoph; Olmedo, Federico Weakest precondition reasoning for expected run-times of probabilistic programs. Programming languages and systems, 364--389, Lecture Notes in Comput. Sci., 9632, Springer, Berlin, 2016.}}, journal = {Mathematical Reviews}, publisher = {American Mathematical Society}, copyright = {American Mathematical Society}, year = {2016}, month = {October}, issn = {2167-5163}, mrnumber = {MR3516285}, mrreviewer = {Fabrizio Riguzzi}, url = {http://www.ams.org/mathscinet-getitem?mr=3516285 } }

@article{Rig16-MNe-RE, author = {Fabrizio Riguzzi}, title = {Review of {Drabent, W\l{}odzimierz On definite program answers and least Herbrand models. Theory Pract. Log. Program. 16 (2016), no. 4, 498--508.}}, journal = {Mathematical Reviews}, publisher = {American Mathematical Society}, copyright = {American Mathematical Society}, year = {2016}, month = {October}, issn = {2167-5163}, mrnumber = {MR3506921}, mrreviewer = {Fabrizio Riguzzi}, url = {http://www.ams.org/mathscinet-getitem?mr=3506921 } }

@article{Rig16-MNd-RE, author = {Fabrizio Riguzzi}, title = {Review of {Jansen, Nils; Kaminski, Benjamin Lucien; Katoen, Joost-Pieter; Olmedo, Federico; Gretz, Friedrich; McIver, Annabelle Conditioning in probabilistic programming. The 31st Conference on the Mathematical Foundations of Programming Semantics (MFPS XXXI), 199--216, Electron. Notes Theor. Comput. Sci., 319, Elsevier Sci. B. V., Amsterdam, 2015. }}, journal = {Mathematical Reviews}, publisher = {American Mathematical Society}, copyright = {American Mathematical Society}, year = {2016}, month = {July}, issn = {2167-5163}, mrnumber = {3472405}, mrreviewer = {Fabrizio Riguzzi}, url = {http://www.ams.org/mathscinet-getitem?mr=3472405 } }

@article{Rig16-MNc-RE, author = {Fabrizio Riguzzi}, title = {Review of {Alviano, Mario; Faber, Wolfgang Supportedly stable answer sets for logic programs with generalized atoms. (English summary) Web reasoning and rule systems, 30-44, Lecture Notes in Comput. Sci., 9209, Springer, 2015. }}, journal = {Mathematical Reviews}, publisher = {American Mathematical Society}, copyright = {American Mathematical Society}, year = {2016}, month = {April}, issn = {2167-5163}, mrnumber = {3441721}, mrreviewer = {Fabrizio Riguzzi}, url = {http://www.ams.org/mathscinet-getitem?mr=3441721} }

@article{Rig16-MNb-RE, author = {Fabrizio Riguzzi}, title = {Review of {Chowdhury, Md. Solimul; Liu, Fangfang; Chen, Wu; Karimi, Arash; You, Jia-Huai Polynomial approximation to well-founded semantics for logic programs with generalized atoms: case studies. Logic-based program synthesis and transformation, 279-296, Lecture Notes in Comput. Sci., 8981, Springer, 2015.}}, journal = {Mathematical Reviews}, publisher = {American Mathematical Society}, copyright = {American Mathematical Society}, year = {2016}, month = {January}, issn = {2167-5163}, mrnumber = {3368319}, mrreviewer = {Fabrizio Riguzzi}, url = {http://www.ams.org/mathscinet-getitem?mr=3368319} }

@article{Rig16-MNa-RE, author = {Fabrizio Riguzzi}, title = {Review of {Janhunen, Tomi; Niemel\"a, Ilkka Cumulativity tailored for nonmonotonic reasoning. Advances in knowledge representation, logic programming, and abstract argumentation, 96--111, Lecture Notes in Comput. Sci., 9060, Springer, 2015. }}, journal = {Mathematical Reviews}, publisher = {American Mathematical Society}, copyright = {American Mathematical Society}, year = {2016}, month = {January}, issn = {2167-5163}, mrnumber = {3368675}, mrreviewer = {Fabrizio Riguzzi}, url = {http://www.ams.org/mathscinet-getitem?mr=3368675} }

*This file was generated by
bibtex2html 1.96.*