Logic Programming Techniques for Reasoning with Probabilistic Ontologies

Riccardo Zese, Elena Bellodi, Evelina Lamma
Dipartimento di Ingegneria
University of Ferrara
Via Saragat 1, I-44122, Ferrara, Italy
[riccardo.zese,elena.bellodi,evelina.lamma]@unife.it

Fabrizio Riguzzi
Dipartimento di Matematica e Informatica
University of Ferrara
Via Saragat 1, I-44122, Ferrara, Italy
fabrizio.riguzzi@unife.it

Abstract

The increasing popularity of the Semantic Web drove to a widespread adoption of Description Logics (DLs) for modeling real world domains. To help the diffusion of DLs a large number of reasoning algorithms have been developed. Usually these algorithms are implemented in procedural languages such as Java or C++. Most of the reasoners exploit the tableau algorithm which has to manage non-determinism, a feature that is hard to handle using such languages. Reasoning on real world domains also requires the capability of managing probabilistic and uncertain information. We thus present TRILL for “Tableau Reasoner for description Logics in proLog” that implements a tableau algorithm and is able to return explanations for the queries and the corresponding probability, and TRILL for “TRILL powered by Pinpointing formulas” which is able to compute a Boolean formula representing the set of explanations for the query. This approach can speed up the process of computing the probability. Prolog non-determinism is used for easily handling the tableau’s non-deterministic expansion rules.

Introduction

The Semantic Web aims at making information regarding real world domains available in a form that is understandable by machines (Hitzler, Krötzsch, and Rudolph 2009). The World Wide Web Consortium is working for realizing this vision by supporting the development of the Web Ontology Language (OWL), a family of knowledge representation formalisms for defining ontologies. OWL is based on Description Logics (DLs), a set of languages that are restrictions of first order logic (FOL) with decidability and, in some cases, low complexity. For example, the OWL DL sublanguage is based on the expressive $SHOIN(D)$ DL while OWL 2 corresponds to the $SROIQ(D)$ DL (Hitzler, Krötzsch, and Rudolph 2009). Moreover, uncertain information is intrinsic to real world domains, thus the combination of probability and logic theories becomes of foremost importance.

In order to fully support the development of the Semantic Web, efficient DL reasoners, such as Pellet, RacerPro, FaCT++, and HermiT, are able to extract implicit information from the modeled ontologies. Despite the large number of available reasoners, only few of them are able to manage probabilistic information as well. One of the most common approaches for reasoning is the tableau algorithm that exploits some non-deterministic expansion rules. This requires the developers to implement a search strategy in an or-branching search space. Moreover, if we want to compute the probability of a query, the algorithm has to compute all the explanations for the query, thus it has to explore all the non-deterministic choices taken during the execution.

In this paper, we present the systems TRILL for “Tableau Reasoner for description Logics in proLog” and TRILL for “TRILL powered by Pinpointing formulas”. They are tableau reasoners for the $SHOIN$ DL and for the ALC DL respectively, both implemented in Prolog. Prolog’s search strategy is exploited for taking into account the non-determinism of the tableau rules. They use the Thea2 library (Vassiliadis, Wielemaker, and Mungall 2009) for parsing OWL in its various dialects. Thea2 translates OWL files into a Prolog representation in which each axiom is mapped into a fact. TRILL and TRILL can check the consistency of a concept and the entailment of an axiom from an ontology and compute the probability of the entailment following the DISPONTE (Riguzzi et al. 2012) semantics. The availability of a Prolog implementation of a DL reasoner will also facilitate the development of probabilistic reasoners that can integrate probabilistic logic programming with probabilistic DLs. In probabilistic logic programming one of the most used approaches is the Distribution Semantics (Sato 1995) which is exploited by DISPONTE for DLs. Since our systems follow the DISPONTE semantics they are easily extensible to take into account this integration.

Description Logics

DLs are knowledge representation formalisms that are at the basis of the Semantic Web (Baader et al. 2003; Baader, Horrocks, and Sattler 2008) and are used for modeling ontologies. They possess nice computational properties such as decidability and/or low complexity.

Usually, DLs’ syntax is based on concepts and roles which correspond respectively to sets of individuals and sets of pairs of individuals of the domain. We first briefly describe ALC and then $SHOIN(D)$.

Let C, R and I be sets of atomic concepts, atomic roles and individuals, respectively. Concepts are defined by induc-
tion as follows. Each \(C \in C \) is a concept, \(\bot \) and \(\top \) are concepts. If \(C, C_1 \) and \(C_2 \) are concepts and \(R \in R \), then \((C_1 \sqcap C_2), (C_1 \sqcup C_2) \) and \(\neg C \) are concepts, as well as \(\exists R.C \) and \(\forall R.C \). A TBox \(T \) is a finite set of concept inclusion axioms \(C \sqsubseteq D \), where \(C \) and \(D \) are concepts. We use \(C \) to abbreviate the conjunction of \(C \sqsubseteq D \) and \(D \sqsubseteq C \). An ABox \(A \) is a finite set of concept membership axioms \(a : C \), role membership axioms \((a, b) : R \), equality axioms \(a = b \) and inequality axioms \(a \neq b \), where \(C \in C, R \in R \) and \(a, b \in I \). A knowledge base (KB) \(K = (T, A) \) consists of a TBox \(T \) and an ABox \(A \) and is usually assigned a semantics in terms of interpretations \(I = (\Delta^I, \cdot^I) \), where \(\Delta^I \) is a non-empty domain and \(\cdot^I \) is the interpretation function that assigns an element to \(\Delta^I \) to each \(a \in I \), a subset of \(\Delta^I \) to each \(C \in A \) and a subset of \(\Delta^I \times \Delta^I \) to each \(R \in R \).

The mapping \(\cdot^I \) is extended to all concepts (where \(R^I(x) = \{ y | (x, y) \in R^I \} \)) as:

\[
\begin{align*}
\top^I &= \Delta^I \\
\bot^I &= \emptyset \\
(C_1 \sqcap C_2)^I &= C_1^I \cap C_2^I \\
(C_1 \sqcup C_2)^I &= C_1^I \cup C_2^I \\
(\neg C)^I &= \Delta^I \setminus C^I \\
(\forall R.C)^I &= \{ x \in \Delta^I \mid (y, x) \in R^I \} \\
(\exists R.C)^I &= \{ x \in \Delta^I \mid (x, y) \in R^I \} \\
\end{align*}
\]

In the following we describe \(SHOIN(D) \) showing what it adds to \(ALC \). A role is either an atomic role \(R \in R \) or the inverse \(R^{-} \) of an atomic role \(R \in R \). We use \(-R \) to denote the set of all inverses of roles in \(R \). An RBox \(R \) consists of a finite set of transitivity axioms \(\text{Trans}(R) \), where \(R \in R \), and role inclusion axioms \(R \sqsubseteq S \), where \(R, S \in R \) and \(R \sqsubseteq S \).

If \(a \in I \), then \(\{ a \} \) is a concept called nominal, and if \(C, C_1 \) and \(C_2 \) are concepts and \(R \in R \), then \(\geq nR \) and \(\leq nR \) for an integer \(n \geq 0 \) are also concepts. A \(SHOIN(D) \) KB \(K = (T, R, A) \) consists of a TBox \(T \), an RBox \(R \) and an ABox \(A \).

The mapping \(\cdot^I \) is extended to all new concepts (where \(\#X \) denotes the cardinality of the set \(X \)) as:

\[
\begin{align*}
(R^{-})^I &= \{ (y, x) \mid (x, y) \in R^I \} \\
(a)^I &= \{ a \} \\
(\geq nR)^I &= \{ x \in \Delta^I \mid \#R^I(x) \geq n \} \\
(\leq nR)^I &= \{ x \in \Delta^I \mid \#R^I(x) \leq n \} \\
\end{align*}
\]

\(SHOIN(D) \) allows the definition of datatype roles, i.e., roles that map an individual to an element of a datatype such as integers, floats, etc. Then new concept definitions involving datatype roles are added that mirror those involving roles introduced above. We also assume that we have predicates over the datatypes.

\(SHOIN(D) \) is decidable if there are no number restrictions on roles which are transitive or have transitive subroles.

A query \(Q \) over a KB \(K \) is usually an axiom for which we want to test the entailment from the KB, written \(K \models Q \). The entailment test may be reduced to checking the unsatisfiability of a concept in the knowledge base, i.e., the emptiness of the concept. For example, the entailment of the axiom \(C \sqsubseteq D \) may be tested by checking the unsatisfiability of the concept \(C \sqcap \neg D \) while the entailment of the axiom \(a : C \) may be tested by checking the unsatisfiability of \(a : \neg C \).

Example 1 The following KB is inspired by the ontology people+pets (Patel-Schneider, Horrocks, and Bechhofer 2003):

\[
\begin{align*}
\exists \text{hasAnimal.Pet} &\sqsubseteq \text{NatureLover} \\
\text{fluffy} : \text{Cat} \\
\text{tom} : \text{Cat} \\
\text{Cat} &\sqsubseteq \text{Pet} \\
(\text{kevin}, \text{fluffy}) : \exists \text{hasAnimal} \\\n(\text{kevin}, \text{tom}) : \exists \text{hasAnimal}
\end{align*}
\]

It states that individuals that own an animal which is a pet are nature lovers and that kevin owns the animals fluffy and tom, which are cats. Moreover, cats are pets. The KB entails the query \(Q = \text{kevin} : \text{NatureLover} \).

Querying KBs: The Tableau Algorithm

In order to answer queries to DL KBs, a tableau algorithm can be used. A tableau is an ABox represented as a graph \(G \) where each node corresponds to an individual \(a \) and is labeled with the set of concepts \(L(a) \) to which \(a \) belongs. Each edge \((a, b) \) in the graph is labeled with the set of roles \(L((a, b)) \) to which the couple \((a, b) \) belongs. A tableau algorithm proves an axiom by refutation, starting from a tableau that contains the negation of the axiom. For example, the axiom \(C \sqsubseteq D \) can be proved by showing that \(C \cap \neg D \) is empty, while, if the query is a class assertion, \(C(a) \), we add \(\neg C \) to the label of \(a \). For testing the inconsistency of a concept \(C \) we have to test the emptiness of \(C \) by adding a new anonymous node \(a \) to the tableau whose label contains \(C \). Then, the tableau algorithm repeatedly applies a set of consistency preserving tableau expansion rules until a clash (i.e., a contradiction, for example, a concept \(C \) and a node \(a \) where \(C \) and \(\neg C \) are present in the label of \(a \)) is detected or a clash-free graph is found to which no more rules are applicable. If no clashes are found, the tableau represents a model for the negation of the query, which is thus not entailed.

Each expansion rule updates as well a tracing function \(\tau \), which associates labels of nodes and edges with a subset of the axioms of the KB. \(\tau \) is initialized as the empty set for all the elements of its domain except for \(\tau(C, a) \) and \(\tau(R, (a, b)) \) to which the values \(\{ a : C \} \) and \(\{ (a, b) : R \} \) are assigned if \(a : C \) and \((a, b) : R \) are in the ABox respectively. The tableau expansion rules for \(SHOIN(D) \) are in Figure 1, where the rules for \(ALC \) are marked by (*).

For ensuring the termination of the algorithm, a special condition known as blocking (Kalyanpur 2006) is used. In a tableau a node \(x \) can be a nominal node if its label \(L(x) \) contains a nominal or a blockable node otherwise. If there is an edge \(e = (x, y) \) then \(y \) is a successor of \(x \) and \(x \) is a predecessor of \(y \). Ancestor is the transitive closure of predecessor while descendant is the transitive closure of successor. A node \(y \) is called an R-neighbour of a node \(x \) if \(y \) is a successor of \(x \) and \(R \in L((x, y)) \), where \(R \in R \).

An R-neighbour \(y \) of \(x \) is safe if (i) \(x \) is blockable or if (ii) \(x \) is a nominal node and \(y \) is not blockaded. Finally, a node \(x \) is blockaded if it has ancestors \(x_0, y \) and \(y_0 \) such that all the
following conditions are true: (1) \(x \) is a successor of \(x_0 \) and \(y \) is a successor of \(y_0 \), (2) \(y, x \) and all nodes on the path from \(y \) to \(x \) are blockable, (3) \(\mathcal{L}(x) = \mathcal{L}(y) \) and \(\mathcal{L}(x_0) = \mathcal{L}(y_0) \), (4) \(\mathcal{L}(\langle x_0, x \rangle) = \mathcal{L}(\langle y_0, y \rangle) \). In this case, we say that \(y \) blocks \(x \). A node is blocked also if it is blockable and all its predecessors are blocked; if the predecessor of a safe node \(x \) is blocked, then we say that \(x \) is indirectly blocked.

Finding Explanations

The problem of finding explanations for a query has been investigated by various authors (Schlobach and Cornet 2003; Kalyanpur 2006; Halaschek-Wiener, Kalyanpur, and Parsia 2006; Kalyanpur et al. 2007). It was called axiom pinpointing in (Schlobach and Cornet 2003) and considered as a non-standard reasoning service useful for tracing derivations and debugging ontologies. In particular, minimal axiom sets or MinAs for short, also called explanations, are introduced in (Schlobach and Cornet 2003).

Definition 1 (MinA) Let \(K \) be a knowledge base and \(Q \) an axiom that follows from it, i.e., \(K \models Q \). We call a set \(M \subseteq K \) a minimal axiom set or MinA for \(Q \) in \(K \) if \(M \models Q \) and it is minimal w.r.t. set inclusion.

The problem of enumerating all MinAs is called MIN-A-ENUM in (Schlobach and Cornet 2003). ALL-MINAs\((Q, K)\) is the set of all MinAs for query \(Q \) in the knowledge base \(K \).

The tableau algorithm returns a single MinA using the tracing function. To solve MIN-A-ENUM, reasoners written in imperative languages, like Pellet (Sirin et al. 2007), have to implement a search strategy in order to explore the entire search space of the possible explanations. In particular, Pellet, that is written entirely in Java, uses Reiter’s hitting set algorithm (Reiter 1987). The algorithm, described in detail in (Kalyanpur 2006), starts from a MinA \(S \) and initializes a labeled tree called Hitting Set Tree (HST) with \(S \) as the label of its root \(\nu \). Then it selects an arbitrary axiom \(E \) in \(S \), it removes it from \(K \), generating a new knowledge base \(K' = K - \{ E \} \), and tests the unsatisfiability of \(C \) w.r.t. \(K' \). If \(C \) is still unsatisfiable, we obtain a new explanation. The algorithm adds a new node \(w \) and a new edge \((\nu, w) \) to the tree, then it assigns this new explanation to the label of \(w \) and the axiom \(E \) to the label of the edge. The algorithm repeats this process until the unsatisfiability test returns negative: in that case the algorithm labels the new node with \(OK \), makes it a leaf, backtracks to a previous node, selects a different axiom to be removed from the KB and repeats these operations until the HST is fully built. The algorithm also eliminates extraneous unsatisfiability tests based on previous results: once a path leading to a node labeled \(OK \) is found, any super-set of that path is guaranteed to be a path leading to a node where \(C \) is satisfiable, and thus no additional unsatisfiability test is needed for that path, as indicated by an \(X \) in the node label. When the HST is fully built, all leaves of the tree are labeled with \(OK \) or \(X \). The distinct non leaf nodes of the tree collectively represent the set ALL-MINAs\((C, K)\).

In (Baader and Peñaloza 2010a; 2010b) the authors consider the problem of finding a pinpointing formula instead of ALL-MINAs\((Q, K)\). The pinpointing formula is a monotone Boolean formula in which each Boolean variable corresponds to an axiom of the KB. This formula is built using the variables and the conjunction and disjunction connectives. It compactly encodes the set of all MinAs. Let assume that each axiom \(E \) of a KB \(K \) is associated with a propositional variable, indicated with \(\text{var}(E) \). The set of all propositional variables is indicated with \(\text{var}(K) \). A valuation \(\nu \) of a monotone Boolean formula is the set of propositional variables that are true. For a valuation \(\nu \subseteq \text{var}(K) \), let \(K_{\nu} := \{ t \in K | \text{var}(t) \in \nu \} \).

Definition 2 (Pinpointing formula) Given a query \(Q \) and a KB \(K \), a monotone Boolean formula \(\phi \) over \(\text{var}(K) \) is called a pinpointing formula for \(Q \) if for every valuation \(\nu \subseteq \text{var}(K) \) it holds that \(K_{\nu} |\models \phi \) iff \(\nu \) satisfies \(\phi \).

In Lemma 2.4 of (Baader and Peñaloza 2010b) the authors proved that the set of all MinAs can be obtained by transforming the pinpointing formula into DNF and removing disjuncts implying other disjuncts. The example below illustrates axiom pinpointing and the pinpointing formula.

Example 2 (Pinpointing formula) Consider the KB of Example 1. We associate Boolean variables to axioms as follows: \(F_1 = \exists \text{hasAnimal}.\text{Pet} \subseteq \text{NatureLover} \), \(F_2 = (\text{kevin}, \text{fluffy}) : \text{hasAnimal} \), \(F_3 = (\text{kevin}, \text{tom}) : \text{hasAnimal} \), \(F_4 = \text{fluffy} : \text{Cat} \), \(F_5 = \text{tom} : \text{Cat} \) and \(F_6 = \text{Cat} \subseteq \text{Pet} \). Let \(Q = \text{kevin} : \text{NatureLover} \) be the query, then ALL-MINAs\((Q, K) = \{ \{ F_2, F_4, F_6, F_1 \}, \{ F_3, F_5, F_6, F_1 \} \} \) while the pinpointing formula is \((F_2 \land F_4) \lor (F_3 \land F_5) \land F_6 \land F_1 \).

A tableau algorithm can be modified to find the pinpointing formula. See (Baader and Peñaloza 2010b) for the details.

Related Work

Usually, DL reasoners implement a tableau algorithm using a procedural language. Since some tableau expansion rules are non-deterministic, the developers have to implement a search strategy from scratch. Moreover, in order to solve MIN-A-ENUM, all different ways of entailing an axiom must be found. For example, Pellet (Sirin et al. 2007) is a tableau reasoner for OWL written in Java and able to solve MIN-A-ENUM. It computes ALL-MINAs\((Q, K)\) by finding a single MinA using the tableau algorithm and then applying the hitting set algorithm to find all the other MinAs. Recently, BUNDLE (Riguzzi et al. 2013) was proposed for reasoning over KBs following the DISPONTE probabilistic semantics. BUNDLE exploits Pellet for solving MIN-A-ENUM and computes the probability of queries.

Reasoners written in Prolog can exploit Prolog’s backtracking facilities for performing the search. This has been observed in various works. In (Beckert and Posegga 1995) the authors proposed a tableau reasoner in Prolog for FOL based on free-variable semantic tableaux. However, the reasoner is not tailored to DLs. Meissner (Meissner 2004) presented the implementation of a Prolog reasoner for the DL ALC\(N\). This work was the basis of (Herchenröder 2006), that considered ALC and improved (Meissner 2004) by implementing heuristic search techniques to reduce the running time. Faizi (Faizi 2011) added to (Herchenröder 2006) the possibility of returning explanations for queries but still handled only ALC.
Deterministic rules:

\(\rightarrow \) **unfold (\(*\)**): if \(A \in \mathcal{L}(a) \), \(A \) atomic and \((A \sqsubseteq D) \in K \), then

- if \(D \notin \mathcal{L}(a) \), then Add\((D, \mathcal{L}(a))\)
 \(\tau(D, a) := (\tau(A, a) \cup \{ A \sqsubseteq D \}) \)

\(\rightarrow \) **CE (\(*\)**): if \((C \sqsubseteq D) \in K \), with \(C \) not atomic, \(a \) not blocked, then

- if \((\neg C \sqcup D) \notin \mathcal{L}(a) \), then Add\((-\neg C \sqcup D, \mathcal{L}(a))\)
 \(\tau((-\neg C \sqcup D), a) := \{ C \sqsubseteq D \} \)

\(\rightarrow \) **\(\cap \) (\(*\)**): if \(\{ C_1 \cap C_2 \} \in \mathcal{L}(a) \), \(a \) is not indirectly blocked, then

- if \(\{ C_1, C_2 \} \subsetneq \mathcal{L}(a) \), then Add\(\{C_1, C_2\}, \mathcal{L}(a)\)
 \(\tau(C_1, a) := \tau((C_1 \cap C_2), a) \)

\(\rightarrow \) **\(\exists \) (\(*\)**): if \(\exists S.C \in \mathcal{L}(a) \), \(a \) is not blocked, then

- if \(a \) has no \(S \)-neighbor \(b \) with \(C \in \mathcal{L}(b) \), then
 - create new node \(b \), Add\((S, (a, b)), Add(C, b)\)
 \(\tau(C, b) := \tau((\exists S.C), a) \)
 \(\tau(S, (a, b)) := \tau((\exists S.C), a) \)

\(\rightarrow \) **\(\forall \) (\(*\)**): if \(\forall S(C) \in \mathcal{L}(a) \), \(a \) is not indirectly blocked and there is an \(R \)-neighbor \(b \) of \(a \), then

- if \(C \notin \mathcal{L}(b) \), then Add\((C, b)\)
 \(\tau(C, b) := \tau((\forall S.C), a) \cup \tau(S, (a, b)) \)

\(\rightarrow \) **\(\forall^\prime \) (\(*\)**): if \(\forall S(C) \in \mathcal{L}(a) \), \(a \) is not indirectly blocked and there is an \(R \)-neighbor \(b \) of \(a \), then

- if \(\forall R.C \notin \mathcal{L}(b) \), then Add\((\forall R.C, b)\)
 \(\tau(\forall R.C, b) := \tau((\forall S.C), a) \cup \tau(R, (a, b)) \cup \{ Trans(R) \} \cup \{ R \sqsubseteq S \} \)

\(\rightarrow \) **\(\geq \) (\(*\)**): if \((\geq nS) \in \mathcal{L}(a) \), \(a \) is not blocked, then

- if there are no \(n \) safe \(S \)-neighbors \(b_1, ..., b_n \) of \(a \) with \(b_i \neq b_j \), then
 - create \(n \) new nodes \(b_1, ..., b_n \); Add\((S, (a, b_1)); \neq(b_i, b_j)\)
 \(\tau(S, (a, b_1)) := \tau((\geq nS), a) \)
 \(\tau(\neq(b_i, b_j)) := \tau((\geq nS), a) \)

\(\rightarrow \) **\(G \) (\(*\)**): if \(\{ a \} \in \mathcal{L}(a) \cap \mathcal{L}(b) \) and not \(a \neq b \), then Merge\((a, b)\)

- for each concept \(C \) in \(\mathcal{L}(a) \), \(\tau(Add(C, \mathcal{L}(a))) \cup \tau(Merge(a, b)) \)
 (similarly for roles merged, and correspondingly for concepts in \(\mathcal{L}(b) \))

Non-deterministic rules:

\(\rightarrow \) **\(\sqcup \) (\(*\)**): if \(\{ C_1 \sqcup C_2 \} \in \mathcal{L}(a) \), \(a \) is not indirectly blocked, then

- if \(\{ C_1, C_2 \} \cap \mathcal{L}(a) = \emptyset \), then
 generate graphs \(G_i := G \) for each \(i \in \{ 1, 2 \} \)
 \(\tau(C_1, a) := \tau((C_1 \sqcup C_2), a) \)

\(\rightarrow \) **\(\leq \) (\(*\)**): if \((\leq nS) \in \mathcal{L}(a) \), \(a \) is not indirectly blocked, then

- if there are \(m \) safe \(S \)-neighbors \(b_1, ..., b_m \) of \(a \) with \(m > n \), then
 for each possible pair \(b_i, b_j, 1 \leq i, j \leq m; i \neq j \) then

 - generate a graph \(G' \)
 \(\tau(Merge(b_i, b_j)) := \tau((\leq nS), a) \cup \tau(S, (a, b_j)); \neq(b_i, b_j)) \)
 if \(b_i \) is a nominal node, then \(Merge(b_i, b_j) \) in \(G' \),
 else if \(b_i \) is a nominal node or ancestor of \(b_j \), then \(Merge(b_i, b_j) \) in \(G' \)
 else \(Merge(b_i, b_j) \) in \(G' \)
 if \(b_i \) is merged into \(b_j \), then for each concept \(C \) in \(\mathcal{L}(b_i) \),
 \(\tau(C, b_i) := \tau(C, b_i) \cup \tau(Merge(b_i, b_j)) \)
 (similarly for roles merged, and correspondingly for concepts in \(b_j \) if merged into \(b_i \))

Figure 1: TRILL tableau expansion rules for OWL DL. The rules for ALC are marked by (\(*\)**).
In (Hustadt, Motik, and Sattler 2008) the authors present the KAON2 algorithm that exploits basic superposition, a refutational theorem proving method for FOL with equality, and a new inference rule, called decomposition, to reduce a SHIQ KB into a disjunctive datalog program.

DLog (Lukácsy and Szeredi 2009) is an ABox reasoning algorithm for the SHIQ language that allows to store the content of the ABox externally in a database and to answer instance check and instance retrieval queries by transforming the KB into a Prolog program. TRILL differs from these works for the considered DL and from DLog for the capability of answering general queries.

A different approach is shown in (Ricca et al. 2009) which introduces a system for reasoning on logic-based ontology representation language, called OntoDLP, which is an extension of (disjunctive) ASP and can interoperate with OWL. This system, called OntoDLV, rewrites the OWL KB into the OntoDLP language, can retrieve information directly from external OWL ontologies and answers queries by using ASP. OntoDLV cannot find the set of explanations thus it is not applicable to DISPONTE KBs. All the presented systems are not able to compute the probability of queries.

TRILL and TRILLP

Both TRILL and TRILLP implement a tableau algorithm, the first solves MIN-A-ENUM while the second computes the pinpointing formula representing the set of MinAs. They can answer concept and role membership queries, subsumption queries, and can test the unsatisfiability of a concept contained in the KB or the inconsistency of the entire KB. TRILL and TRILLP are implemented in Prolog, so the management of the non-determinism of the rules is delegated to the language.

We use the Thea2 library (Vassiliadis, Wielemaker, and Mungall 2009) for converting OWL DL KBs into Prolog. Thea2 performs a direct translation of the OWL axioms into Prolog facts. For example, a simple subclass axiom between two named classes \textit{Cat} \sqsubseteq \textit{Pet} is written using the \texttt{subClassOf}/2 predicate as \texttt{subClassOf('Cat', 'Pet')}. For more complex axioms, Thea2 exploits the list construct of Prolog, so the axiom \textit{NatureLover} \equiv \textit{PetOwner} \sqcup \textit{GardenOwner} becomes \texttt{equivalentClasses([[\textit{NatureLover}'}, \texttt{unionOf}([[\textit{PetOwner}'}, \texttt{'GardenOwner']])])}.

In order to represent the tableau, TRILL and TRILLP use a pair \textit{Tableau} = (A, T), where \textit{A} is a list containing information about individuals and class assertions with the corresponding value of the tracing function. The tracing function stores a fragment of the knowledge base in TRILL and the pinpointing formula in TRILLP. \textit{T} is a triple (G, RBN, RBR) in which \textit{G} is a directed graph that contains the structure of the tableau, \textit{RBN} is a red-black tree (a key-value dictionary) in which a key is a couple of individuals and its value is the set of the labels of the edge between the two individuals, and \textit{RBR} is a red-black tree in which a key is a role and its value is the set of couples of individuals that are linked by the role. This representation allows to quickly find the information needed during the execution of the tableau algorithm. For managing the \textit{blocking} system we use a predicate for each blocking state: \texttt{nominal}/2, \texttt{blockable}/2, \texttt{blocked}/2, \texttt{indirectlyblocked}/2 and \texttt{safe}/3. Each predicate takes as arguments the individual \textit{Ind} and the tableau (A, T); \texttt{safe}/3 takes as input also the role \textit{R}. For each individual \textit{Ind} in the ABox, we add the atom \texttt{nominal(Ind)} to \textit{A}, then every time we have to check the blocking status of an individual we call the corresponding predicate that returns the status by checking the tableau.

Deterministic and non-deterministic tableau expansion rules are treated differently. Non-deterministic rules are implemented by a predicate \texttt{rule_name}(\textit{Tab}, \texttt{TabList}) that, given the current tableau \textit{Tab}, returns the list of tableaux \texttt{TabList} created by the application of the rule on \textit{Tab}. Deterministic rules are implemented by a predicate \texttt{rule_name}(\textit{Tab}, \texttt{Tab1}) that, given the current tableau \textit{Tab}, returns the tableau \texttt{Tab1} obtained by the application of the rule on \textit{Tab}. Expansion rules are applied in order by \texttt{apply_all_rules/2}, first the non-deterministic ones and then the deterministic ones. The predicate \texttt{apply_nondet_rules/3} takes as input the list of non-deterministic rules and the current tableau and returns a tableau obtained by the application of one of the rules. It is called as \texttt{apply_nondet_rules(RuleList, Tab, Tab1)} and is shown in Figure 2.

If a non-deterministic rule is applicable, the list of tableaux obtained by its application is returned by the predicate corresponding to the applied rule, a cut is performed to avoid backtracking to other rule choices and a tableau from the list is non-deterministically chosen with the \texttt{member/2} predicate. If no non-deterministic rule is applicable, deterministic rules are tried sequentially with the predicate \texttt{apply_det_rules/3}, shown in Figure 2, that is called as \texttt{apply_det_rules(RuleList, Tab, Tab1)}. It takes as input the list of deterministic rules and the current tableau and returns a tableau obtained with the application of one of the rules. After the application of a deterministic rule, a cut avoids backtracking to other possible choices for the deterministic rules. If no rule is applicable, the input tableau is returned and rule application stops, otherwise a new round of rule application is performed.

In Figure 1, symbol (*) denotes the rules used by both TRILL and TRILLP. In these rules, the operator \cup for τ means union between two sets in TRILL, while in TRILLP it links two Boolean formulas with the Boolean operator \lor.

Computing the Probability

The aim of our work is to implement algorithms which can compute the probability of queries to KBs following the DISPONTE (Riguzzi et al. 2012) semantics. DISPONTE applies the distribution semantics (Sato 1995) of probabilistic logic programming to DLs. A program following this semantics defines a probability distribution over normal logic programs called \textit{worlds}. Then the distribution is extended to a joint distribution over worlds and queries from which the probability of a query is obtained by marginalization.

In DISPONTE, a probabilistic knowledge base K con-
Figure 2: Definition of the non-deterministic expansion rules by means of the predicates apply_all_rules/2, apply_nondet_rules/3 and apply_det_rules/3. The list [...] contains the available rules and is different in TRILL and TRILLp.

contains a set of probabilistic axioms which take the form

\[p \cdot E \]

where \(p \) is a real number in \([0, 1]\) and \(E \) is a DL axiom. The probability \(p \) can be interpreted as an epistemic probability, i.e., as the degree of our belief in the truth of axiom \(E \). For example, a probabilistic concept membership axiom \(p \cdot a : C \) means that we have degree of belief \(p \) in \(C(a) \). A probabilistic concept inclusion axiom of the form \(p \cdot C \subseteq D \) represents the fact that we believe in the truth of \(C \subseteq D \) with probability \(p \).

The idea of DISPONTE is to associate independent Boolean random variables to the axioms contained in the KB. To compute the probability of the query with a dynamic program is computed and summed with the others. This can be done by exploiting a splitting algorithm as shown in (Poole 2000). Alternatively, we can assign independent Boolean random variables to the axioms contained in the KB and define the DNF Boolean formula \(f_K \) which models the set of explanations \(K \). Thus \(f_K(X) = \bigvee_{\kappa \in K} \bigwedge_{(E_i, k) \in \kappa} X_i \bigwedge_{(E_i, 0) \in \kappa} \neg X_i \), where \(X = \{X_i | (E_i, k) \in \kappa, \kappa \in K\} \) is the set of Boolean random variables. TRILLp, instead, computes directly a pinpointing formula which is a monotone Boolean formula that represents the set of all MinAs. Irrespective of which representation of the explanations we choose, a DNF or a general pinpointing formula, we can apply knowledge compilation and transform it into a Binary Decision Diagram (BDD), from which we can compute the probability of the query with a dynamic programming algorithm that is linear in the size of the BDD. A BDD for a function of Boolean variables is a rooted graph that has one level for each Boolean variable. A node \(n \) in a BDD has two children: one corresponding to the 1 value of the variable associated with the level of \(n \), indicated with \(child_1(n) \), and one corresponding to the 0 value of the variable, indicated with \(child_0(n) \). When drawing BDDs, the 0-branch - the one going to \(child_0(n) \) - is distinguished from the 1-branch by drawing it with a dashed line. The leaves store either 0 or 1. Figure 3 shows a BDD for the function \(f(X) = X_1 \land X_2 \lor (X_2 \land X_3) \), where the variables \(X = \{X_1, X_2, X_3\} \) are independent Boolean random variables.

A BDD performs a Shannon expansion of the Boolean formula \(f(X) \), so that, if \(X \) is the variable associated with the root level of a BDD, the formula \(f(X) \) can be represented as \(f(X) = X \land f^X(X) \lor X \land f^X(X) \) where

\[\{1, (2), \{(1)\}, \{(2)\}, \{} \]

and the query axiom \(Q = kevin : NatureLover \) is true in the first of them, while in the remaining ones it is false. The probability of the query is \(P(Q) = 0.5 \cdot 0.6 = 0.3 \).

When a probabilistic KB is given as input, all the axioms are translated by means of Thea2. Then, for each probabilistic axiom of the form \(\text{Prob} :: \text{Axiom} \), a fact \(p(\text{Axiom}, \text{Prob}) \) is asserted in the Prolog KB.

Figure 3: BDD representing the function \(f(X) = (X_1 \land X_3) \lor (X_2 \land X_3) \).

\[\{(1), (2), \{(1)\}, \{(2)\}, \{} \]

\(p \cdot \exists \text{hasAnimal}.\text{Pet} \subseteq \text{NatureLover} \]

\(\text{fluffy} : \text{Cat} \]

\(\text{tom} : \text{Cat} \]

\[0.6 :: \text{Cat} \subseteq \text{Pet} \]

\((\text{kevin}, \text{fluffy}) : \text{hasAnimal} \]

\((\text{kevin}, \text{tom}) : \text{hasAnimal} \]

It indicates that the individuals that own an animal which is a pet are nature lovers with a 50% probability and cats are pets with a 60% probability. The KB has four possible worlds:
\(f^X(X) (f^\bar{X}(X)) \) is the formula obtained by \(f(X) \) by setting \(X \) to 1 (0). Now the two disjuncts are pairwise exclusive and the probability of \(f(X) \) being true can be computed as
\[
P(f(X)) = P(X)P(f^X(X)) + (1-P(X))P(f^\bar{X}(X))
\]
knowing the probabilities of the Boolean variables of being true.

TRILL-on-SWISH

In order to popularize the use of Prolog for implementing reasoning algorithm, we made TRILL available as a Web application called “TRILL-on-SWISH” and available at http://trill.lamping.unife.it. We exploited SWISH (Lager and Wielmaker 2014), a recently proposed Web framework for logic programming that is based on various features and packages of SWI-Prolog. SWISH is a Web application based on SWI-Prolog that allows the user to write Prolog programs and ask queries in the browser without installing anything on his machine. We modified it in order to manage OWL KBs. SWISH also allows users to collaborate on code development. TRILL-on-SWISH allows users to write a KB following the RDF/XML format directly in the web page or load it from a URL and specify queries that are executed on the server. Once the computation ends, the results are sent to the client browser and visualized in the Web page.

Experiments

In order to evaluate the performances of TRILL and TRILL\(^P\) we did a comparison with respect to BUNDLE, a state-of-art reasoner, when computing probability of queries. We used four different knowledge bases of various complexity to which we added 50 probabilistic axioms:

- **BRCA**\(^1\) models the risk factor of breast cancer;
- an extract of the DBPedia\(^2\) ontology obtained from Wikipedia;
- Biopax level 3\(^3\) models metabolic pathways;
- Vicodi\(^4\) contains information on European history.

For the tests, we used a version of the DBPedia and Biopax KBs without the ABox and a version of the BRCA and of Vicodi with an ABox containing 1 individual and 19 individuals respectively. To each KB, we added 50 probabilistic axioms. For each datasets we randomly created 100 different queries. In particular, for the DBPedia and Biopax datasets we created 100 subclass-of queries while for the other KBs we created 80 subclass-of and 20 instance-of queries. For generating the subclass-of queries, we randomly selected two classes that are connected in the hierarchy of classes, so that each query had at least one explanation. For the instance-of queries, we randomly selected an individual \(a \) and a class to which \(a \) belongs by following the hierarchy of the classes starting from the class to which \(a \) explicitly belongs in the KB.

Table 1 shows, for each ontology, the average number of different MinAs computed and the average time in seconds that TRILL, TRILL\(^P\) and BUNDLE took for computing the probability of the queries. In particular, the BRCA and the version of DBPedia that we used contain a large number of subclass axioms between complex concepts. These preliminary tests show that both TRILL and TRILL\(^P\) performances can sometimes be better than BUNDLE, even if they lack all the optimizations implemented in BUNDLE. This represents evidence that a Prolog implementation of a Semantic Web tableau reasoner is feasible and that may lead to practical systems. Moreover, TRILL\(^P\) presents an improvement of the execution time with respect to TRILL when more MinAs are present.

Conclusions

In this paper we have presented the algorithm TRILL for reasoning on \(\text{SHOIN}^\text{D} \) KBs and the algorithm TRILL\(^P\) for reasoning on \(\text{ALC} \) KBs. The experiments performed show that Prolog is a viable language for implementing DL reasoning algorithms and that their performances are comparable with those of a state-of-art reasoner such as BUNDLE.

In the future we plan to apply various optimizations to our systems in order to better manage the expansion of the tableau. In particular, we plan to carefully choose the rule and node application order. Moreover, we plan to exploit TRILL for implementing algorithms for learning the parameters contained in probabilistic KBs following the DISPONTE semantics, along the lines of (Bellodi and Riguzzi 2012; 2013; Riguzzi et al. 2014).

References

\(^1\)http://www2.cs.man.ac.uk/~klinovp/pronto/brc/cancer_cc.owl
\(^2\)http://dbpedia.org/
\(^3\)http://www.biopax.org/
\(^4\)http://www.vicodi.org/
Table 1: Average time for computing the probability of queries in seconds.

<table>
<thead>
<tr>
<th>DATASET</th>
<th>AVG. N. MINAS</th>
<th>TRILL TIME (S)</th>
<th>TRILLp TIME (S)</th>
<th>BUNDLE TIME (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRCA</td>
<td>6.49</td>
<td>27.87</td>
<td>4.74</td>
<td>6.96</td>
</tr>
<tr>
<td>DBPedia</td>
<td>16.32</td>
<td>51.56</td>
<td>4.67</td>
<td>3.79</td>
</tr>
<tr>
<td>Biopax level 3</td>
<td>3.92</td>
<td>0.12</td>
<td>0.12</td>
<td>1.85</td>
</tr>
<tr>
<td>Vicodi</td>
<td>1.02</td>
<td>0.19</td>
<td>0.19</td>
<td>1.12</td>
</tr>
</tbody>
</table>

Patel-Schneider, P. F.; Horrocks, I.; and Bechhofer, S. 2003. Tutorial on OWL.

