
Under consideration for publication in Theory and Practice of Logic Programming 1

The PITA System: Tabling and Answer

Subsumption for Reasoning under Uncertainty

FABRIZIO RIGUZZI

ENDIF – University of Ferrara

Via Saragat 1, I-44122, Ferrara, Italy

E-mail: fabrizio.riguzzi@unife.it

TERRANCE SWIFT

CENTRIA – Universidade Nova de Lisboa

E-mail: tswift@cs.suysb.edu

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Many real world domains require the representation of a measure of uncertainty. The most
common such representation is probability, and the combination of probability with logic
programs has given rise to the field of Probabilistic Logic Programming (PLP), leading to
languages such as the Independent Choice Logic, Logic Programs with Annotated Disjunc-
tions (LPADs), Problog, PRISM and others. These languages share a similar distribution
semantics, and methods have been devised to translate programs between these languages.
The complexity of computing the probability of queries to these general PLP programs is
very high due to the need to combine the probabilities of explanations that may not be ex-
clusive. As one alternative, the PRISM system reduces the complexity of query answering
by restricting the form of programs it can evaluate. As an entirely different alternative,
Possibilistic Logic Programs adopt a simpler metric of uncertainty than probability.

Each of these approaches – general PLP, restricted PLP, and Possibilistic Logic Pro-
gramming – can be useful in different domains depending on the form of uncertainty to
be represented, on the form of programs needed to model problems, and on the scale of
the problems to be solved. In this paper, we show how the PITA system, which originally
supported the general PLP language of LPADs, can also efficiently support restricted PLP
and Possibilistic Logic Programs. PITA relies on tabling with answer subsumption and
consists of a transformation along with an API for library functions that interface with
answer subsumption. We show that, by adapting its transformation and library functions,
PITA can be parameterized to PITA(IND,EXC) which supports the restricted PLP of
PRISM, including optimizations that reduce non-discriminating arguments and the com-
putation of Viterbi paths. Furthermore, we show PITA to be competitive with PRISM
for complex queries to Hidden Markov Model examples, and sometimes much faster. We
further show how PITA can be parameterized to PITA(COUNT) which computes the
number of different explanations for a subgoal, and to PITA(POSS) which scalably im-
plements Possibilistic Logic Programming. PITA is a supported package in version 3.3 of
XSB.

KEYWORDS: Probabilistic Logic Programming, Possibilistic Logic Programming, Tabling,
Answer Subsumption, Program Transformation

2 F. Riguzzi and T. Swift

1 Introduction

Uncertainty, imprecision and vagueness are very important for modeling real world

domains where facts can often not be ascertained with complete confidence. In the

field of Logic Programming, there have recently been many efforts to include these

characteristics, originating whole research fields such as Probabilistic Logic Pro-

gramming (PLP), Possibilistic Logic Programming and Fuzzy Logic Programming.

In all three fields many approaches have been proposed for modeling uncertainty,

imprecision and vagueness, obtaining new languages that are often equipped with

efficient inference algorithms.

In Probabilistic Logic Programming, a large number of languages have been inde-

pendently proposed. Many of these however follow a common approach, the distri-

bution semantics (Sato 1995), and in fact there are transformations for converting

a program in one PLP language into another PLP language (Vennekens and Ver-

baeten 2003; De Raedt et al.). Examples of such PLP languages are Probabilistic

Logic Programs (Dantsin 1991), Probabilistic Horn Abduction (PHA) (Poole 1993),

Independent Choice Logic (ICL) (Poole 1997), PRISM (Sato 1995), Logic Pro-

grams with Annotated Disjunctions (LPADs), (Vennekens et al. 2004) and ProbLog

(De Raedt et al. 2007). Most of these languages impose few restrictions on the type

of programs they can evaluate – ICL, LPADs and others for instance, have been

defined on normal programs with function symbols. Accordingly, we term systems

that evaluate large classes of PLP programs general PLP systems. However a great

deal of efficiency and scalability can be obtained by restricting how different expla-

nations are constructed and combined. Such an approach is adopted by the PRISM

system (Sato et al. 2010) which we refer to as a restricted PLP system. Both gen-

eral and restricted PLP systems have advantages in different domains depending on

the form of uncertainty to be represented, the form of programs needed to model

problems, and on the scale of the problems to be solved.

Possibilistic Logic Programming models uncertainty by means of possibility the-

ory rather than probability theory. Possibilistic Logic Programming aims at com-

puting the degree of uncertainty of a query in the form of a necessity measure. Given

a possibilistic knowledge base, inference rules have been developed for answering

queries (Dubois and Prade 2004).

In this paper we show that an inference technique and system developed for

general PLP called Probabilistic Inference with Tabling and Answer subsumption

(PITA), can be parameterized to efficiently reason with different measures of un-

certainty. PITA translates a general PLP program into a normal program that is

evaluated by a Prolog engine with tabling. The transformation adds an extra ar-

gument to each subgoal to provide access to an auxiliary data structure used in

computing the uncertainty of the subgoal. The transformed program is evaluated

using tabling to memo intermediate results and to support well-founded negation,

along with a tabling feature named answer subsumption to combine explanations

from different clauses, and a set of library predicates to interface with the auxiliary

data structure.

PITA was first presented in (Riguzzi and Swift 2010b) and addressed general PLP

The PITA System 3

using Binary Decision Diagrams (BDDs) as auxiliary data structures. That version

of PITA, termed here PITA(PROB), was compared with ProbLog, cplint (Riguzzi

2007) and CVE (Meert et al. 2009) and found to be fast and scalable. In this paper

we first consider a parameterization called PITA(IND,EXC) and compare to the

restricted PLP system PRISM, one of the first and most widely used systems for

PLP. Preliminary results show that PITA(IND,EXC) turns out to be faster than

PRISM on complex queries to a naive encoding of a Hidden Markov Model (HMM).

When the optimized encoding proposed by (Christiansen and Gallagher 2009) is

used, the timing result depend on the input data, with PRISM faster on random

sequences and PITA(IND,EXC) faster on repeated sequences. When adapting PITA

to compute the most probable explanation of the query (or Viterbi’s path), we

obtain similar performances in relation to PRISM.

Moreover, we show that PITA can be also be parameterized to PITA(POSS)

to compute the necessity of formulas from Possibilistic Logic Programs, and show

the resulting implementation to be highly scalable. Together, these results show

the versatility of the PITA algorithm, and how the implementation can be easily

adapted to support different types of uncertain reasoning.

The paper is organized as follows. Section 2 presents Probabilistic Logic Program-

ming while Section 3 discusses Possibilistic Logic Programming. Section 4 reviews

tabling and answer subsumption; while Section 5 presents the PITA program trans-

formation and PITA(PROB). In Section 6 we describe PITA(IND,EXC) together

with experimental results on an HMM dataset. Section 7 presents PITA(POSS) for

computing necessity levels from possibilistic programs.

2 Probabilistic Logic Programming

Various languages have been proposed in the field of Probabilistic Logic Program-

ming, such as for example Bayesian Logic Programs (Kersting and De Raedt 2000),

CLP(BN) (Santos Costa et al. 2003) or P-log (Baral et al. 2009). A large group

of languages follows the distribution semantics (Sato 1995) or a variant thereof. In

the distribution semantics a probabilistic logic program defines a probability dis-

tribution over a set of normal logic programs (called worlds). The distribution is

extended to a joint distribution over worlds and queries and the probability of a

query is obtained from this distribution by marginalization.

The languages differ in the way they define the distribution over logic programs.

Each language allows probabilistic choices among atoms in clauses: Probabilistic

Logic Programs, PHA, ICL, PRISM, and ProbLog allow probability distributions

over facts, while LPADs allow probability distribution over the heads of clauses. All

these languages have the same expressive power: there are transformations with lin-

ear complexity that can convert each one into the others (Vennekens and Verbaeten

2003; De Raedt et al.). In this paper we will use LPADs because their syntax is

the most general.

Example 1

The following LPAD T1 captures a Markov model of length two with three states

4 F. Riguzzi and T. Swift

of which state 3 is an end state

C1 = s(0, 1) : 1/3 ∨ s(0, 2) : 1/3 ∨ s(0, 3) : 1/3.

C2 = s(1, 1) : 1/3 ∨ s(1, 2) : 1/3 ∨ s(1, 3) : 1/3 ← s(0, 1).

C3 = s(1, 1) : 0.2 ∨ s(1, 2) : 0.2 ∨ s(1, 3) : 0.6 ← s(0, 2).

The predicate s(T, S) models the fact that the system is in state S at time T .

Clause C1 selects the first state, while clauses C2 and C3 select the second state

depending on the value of the first. As state 3 is the end state, if s(0, 3) is selected

at time 0, no state follows.

LPADs are sets of disjunctive clauses in which each atom in the head is annotated

with a probability. If the probabilities in the head do not sum up to 1, an extra

dummy atom null is implicitly assumed to represent the remaining probability

mass and is such that it does not appear in the body of any clause. A ground

LPAD clause represents a probabilistic choice among the normal program clauses

obtained by selecting one of the heads.

We now define the distribution semantics for the case in which a program does not

contain function symbols so that its Herbrand base is finite 1. Let us first introduce

some terminology. An atomic choice is a selection of the i-th atom for a grounding

Cθ of a probabilistic clause C and is represented by the triple (C, θ, i).

For example, (C2, {}, 1) is an atomic choice selecting atom s(1, 1) from C2 ob-

taining the clause

s(1, 1)← s(0, 1).

A set of atomic choices κ is consistent if (C, θ, i) ∈ κ, (C, θ, j) ∈ κ⇒ i = j, i.e., only

one head is selected for a ground clause. For example κ = {(C2, {}, 1), (C2, {}, 2)}

is not consistent.

A composite choice κ is a consistent set of atomic choices. The probability of

composite choice κ is

P (κ) =
∏

(C,θ,i)∈κ

P0(C, i)

where P0(C, i) is the probability annotation of head i of clause C. A selection σ

is a total composite choice (one atomic choice for every grounding of each proba-

bilistic statement/clause). For example, σ = {(C1, {}, 1), (C2, {}, 1), (C3, {}, 2)} is

a selection for T1. A selection σ identifies a logic program wσ called a world. The

probability of wσ is P (wσ) = P (σ) =
∏

(C,θ,i)∈σ P0(C, i). Since the program does

not have function symbols the set of worlds is finite: WT = {w1, . . . , wm} and P (w)

is a distribution over worlds:
∑

w∈WT
P (w) = 1

We can define the conditional probability of a query Q given a world: P (Q|w) = 1

if Q is true in w and 0 otherwise. The probability of the query can then be obtained

by marginalizing over the query

P (Q) =
∑

w

P (Q,w) =
∑

w

P (Q|w)P (w) =
∑

w|=Q

P (w)

1 However, the distribution semantics for programs with function symbols has been defined as
well (Sato 1995; Poole 2000; Riguzzi and Swift 2010a).

The PITA System 5

Inference in probabilistic logic programming is performed by finding explanations

for queries. An explanation is a composite choice such that the query is true in

all the worlds that are compatible with the composite choice. The query is true

if one of the explanations happens, so the query is true if the disjunction of the

explanations is true, where each explanation is interpreted as the conjunction of all

its atomic choices. Each of these choices is associated to a probability so the problem

of computing the probability of the query is reduced to the problem of computing

the probability of a DNF formula, which is an NP-hard problem (Kimmig et al.

2008). The most efficient way to date of solving the problem makes use of Binary

Decision Diagram (BDDs) that are used to represent the DNF formula in a way that

allows to compute the probability with a simple dynamic programming algorithm

(De Raedt et al. 2007; Riguzzi 2007; Kimmig et al. 2008; Riguzzi 2008; Riguzzi

2009; Riguzzi and Swift 2010a; Riguzzi and Swift 2010b; Riguzzi 2010).

3 Possibilistic Logic Programming

Possibilistic Logic (Dubois et al. 1994) is a logic of uncertainty that allows reason-

ing under incomplete evidence. In this logic, the degree of necessity of a formula

expresses to what extent the available evidence entails the truth of the formula and

the degree of possibility expresses to what extent the truth of the formula is not

incompatible with the available evidence.

Given a formula φ, we indicate with Π(φ) its degree of possibility and with N(φ)

its degree of necessity. Their relation is established by N(φ) = 1−Π(¬φ).

A possibilistic clause is a first order logic clause C to which a number is attached

taken as a lower bound of its necessity or possibility degree. We consider here the

possibilistic logic CPL1 (Dubois et al. 1991) in which only lower bounds on necessity

are considered. Thus (C,α) means that N(C) ≥ α. A possibilistic theory is a set of

possibilistic clauses.

A possibility measure satisfies a possibilistic clause (C,α) if N(C) ≥ α or equiv-

alently if Π(¬C) ≤ 1 − α. A possibility measure satisfies a possibilistic theory if

it satisfies every clause in it. A possibilistic clause (C,α) is a consequence of a

possibilistic theory F if every possibility measure satisfying F also satisfies (C,α).

Inference rules of classical logic have been extended to rules in possibilistic logic.

Here we report two sound inference rules (Dubois and Prade 2004):

• (φ, α), (ψ, β) ⊢ (R(φ, ψ),min(α, β)) where R(φ, ψ) is the resolvent of φ and ψ

(extension of resolution)

• (φ, α), (φ, β) ⊢ (φ,max(α, β)) (weight fusion)

A Possibilistic Logic Programming language has been proposed in (Dubois et al.

1991). A Possibilistic Logic Program is a set of formulas of the form (C,α) where

C is a definite program clause

H ← B1, . . . , Bn.

and α is a possibility or necessity degree. We consider the subset of this language

that is included in CPL1, i.e., α is a real number in (0,1] that is a lower bound

6 F. Riguzzi and T. Swift

on the necessity degree of C. The problem of inference in this language consists in

computing the maximum value of α such that N(Q) ≥ α holds for a query Q. The

above inference rules are complete for this language.

Example 2

The following possibilistic program computes the least unsure path in a graph, i.e.,

the path with maximal weight, the weight of a path being the weight of its weakest

edge (Dubois et al. 1991).

(path(X,X), 1)

(path(X,Y)← path(X,Z), edge(Z, Y), 1)

(edge(a, b), 0.3)

. . .

We restrict our discussion here to positive programs. However we note that ap-

proaches for normal Possibilistic Logic programs have been proposed in (Nieves

et al. 2007; Nicolas et al. 2006; Osorio and Nieves 2009) and (Bauters et al. 2010).

4 Tabling and Answer Subsumption

The idea behind tabling is to maintain in a table both subgoals encountered in

a query evaluation and answers to these subgoals. If a subgoal is encountered

more than once, the evaluation reuses information from the table rather than re-

performing resolution against program clauses. Although the idea is simple, it has

important consequences. First, tabling ensures termination for a wide class of pro-

grams, and it is often easier to reason about termination with programs using

tabling than with basic Prolog. Second, tabling can be used to evaluate programs

with negation according to the WFS. Third, for queries to wide classes of programs,

such as datalog programs with negation, tabling can achieve the optimal complex-

ity for query evaluation. And finally, tabling integrates closely with Prolog, so that

Prolog’s familiar programming environment can be used, and no other language is

required to build complete systems. As a result, a number of Prologs now support

tabling including XSB, YAP, B-Prolog, ALS, and Ciao. In these systems, a predi-

cate p/n is evaluated using SLDNF by default: the predicate is made to use tabling

by a declaration such as table p/n that is added by the user or compiler.

This paper makes use of a tabling feature called answer subsumption. Most for-

mulations of tabling add an answer A to a table for a subgoal S only if A is a not

a variant (as a term) of any other answer for S. However, in many applications it

may be useful to order answers according to a partial order or (upper semi-)lattice.

As an example, consider the case of a lattice on the second argument of a binary

predicate p. Answer subsumption may be specified by means of a declaration such

as table p(,join/3 - bottom/1) where bottom/1 returns the bottom element of the

lattice and join/3 is the join operation of the lattice. Thus if a table had an an-

swer p(a, d1) and a new answer p(a, d2) were derived, the answer p(a, d1) would be

replaced by p(a, d3), where d3 is obtained by calling join(d1, d2, d3). In the PITA

algorithm for LPADs presented in Section 5, the last argument of atoms is used to

store explanations for the atom in the form of BDDs and the join/3 operation is

The PITA System 7

the logical disjunction of two explanations2; under the simplifying assumptions of

PITA(IND,EXC) or/3 is simple addition; while for possibilistic logic or/3 takes the

maximum of its input arguments. Answer subsumption over arbitrary upper semi-

lattices is implemented in XSB for stratified programs (Swift 1999); in addition,

the mode-directed tabling of B-Prolog (cf. (Zhou 2011)) can also be seen as a form

of answer subsumption.

For function-free programs, the tabling used by the PITA system terminates cor-

rectly for left-to-right dynamically stratified LPADs. However, we note that the ter-

mination results of (Riguzzi and Swift 2010a) and PITA itself both apply to a much

larger class of well-defined LPADs with function symbols. As noted in Section 2, the

major probabilistic logic languages defined under the distribution semantics can be

finitely translated into one another, so that the termination and correctness results

for LPADs extend to other languages: in particular to the restricted PLP language

of Section 6. In addition the results of (Riguzzi and Swift 2010a), which capture

termination of general probabilistic programs that give rise to multiple worlds, di-

rectly apply to the simpler case of Possibilistic Logic Programs, which do not give

rise to multiple worlds.

5 PITA for General Probabilistic Logic Programming

The PITA Transformation. PITA computes the probability of a query from a prob-

abilistic program in the form of an LPAD by first transforming the LPAD into a

normal program containing calls to manipulate uncertainty information. The idea

is to add an extra argument to each literal to access a data structure containing

the information that is necessary for computing the probability of the subgoal.

The extra arguments of these literals are combined using a set of general library

functions:

• init, end : initialize and terminate the extra data structures necessary for

manipulating uncertainty information

• zero(-D), one(-D), and(+D1,+D2,-DO), or(+D1,+D2, -DO), not(+D1,-DO):

Boolean operations between uncertainty information data structures;

• add var(+N Val,+Probs,-Var): addition of a new multi-valued random vari-

able with N Val values and list of probabilities Probs ;

• equality(+Var,+Value,-D): D is a data structure representing Var=Value, i.e.

that the random variable Var is assigned Value in D;

• ret prob(+D,-P): returns the probability of the data structure D.

The auxiliary predicate get var n(+R,+S,+Probs,-Var) is used to wrap add var/3

to avoid adding a new random variable when one already exists for a given clause

instantiation. As shown below, a new fact var(R,S,Var) is asserted each time a new

random variable is created: Var is an integer that identifies the random variable

2 The logical disjunction d3 can be seen as subsuming d1 and d2 over the partial order af impli-
cation defined on propositional formulas that represent explanations.

8 F. Riguzzi and T. Swift

associated with clause R under the grounding represented by S. get var n/4 has the

following definition

get var n(R,S, Probs, V ar)←

(var(R,S, V ar)→ true;

length(Probs, L), add var(L, Probs, V ar), assert(var(R,S, V ar))).

The PITA transformation applies to clauses, literals and atoms. The transforma-

tion for a head atom H , PITAH(H), is H with the variable D added as the last

argument. Similarly, the transformation for a body atom Aj , PITAB(Aj), is Aj

with the variable Dj added as the last argument. The transformation for a negative

body literal Lj = ¬Aj , PITAB(Lj), is the Prolog conditional

(PITA′
B(Aj)→ not(DNj , Dj); one(Dj)),

where PITA′
B(Aj) is Aj with the variable DNj added as the last argument. In

other words, the input data structure, DNj, is negated if it exists; otherwise the

data structure for the constant function 1 is returned.

The disjunctive clause

Cr = H1 : α1 ∨ . . . ∨Hn : αn ← L1, . . . , Lm.

where the parameters sum to 1, is transformed into the set of clauses PITA(Cr)

PITA(Cr, 1) = PITAH(H1)← one(DD0),

P ITAB(L1), and(DD0, D1, DD1), . . . ,

P ITAB(Lm), and(DDm−1, Dm, DDm),

get var n(r, V C, [α1, . . . , αn], V ar),

equality(V ar, 1, DD), and(DDm, DD,D).

. . .

P ITA(Cr, n) = PITAH(Hn)← one(DD0),

P ITAB(L1), and(DD0, D1, DD1), . . . ,

P ITAB(Lm), and(DDm−1, Dm, DDm),

get var n(r, V C, [α1, . . . , αn], V ar),

equality(V ar, n,DD), and(DDm, DD,D).

where V C is a list containing each variable appearing in Cr.

Example 3

Clause C1 from the LPAD of Example 1 is translated into

s(0, 1, D) ← one(DD0), get var n(1, [], [1/3, 1/3, 1/3], V ar),

equality(V ar, 1, DD), and(DD0, DD,D).

s(0, 2, D) ← one(DD0), get var n(2, [], [1/3, 1/3, 1/3], V ar),

equality(V ar, 1, DD), and(DD0, DD,D).

s(0, 3, D) ← one(DD0), get var n(3, [], [1/3, 1/3, 1/3], V ar),

equality(V ar, 1, DD), and(DD0, DD,D).

In order to answer queries, the goal genl prob(Goal,P) is used, which is defined by

The PITA System 9

genl prob(Goal, P) ← init, retractall(var(, ,)),

add d arg(Goal,D,GoalD),

(call(GoalD)→ ret prob(D,P);P = 0.0),

end.

where add d arg(Goal,D,GoalD) implements PITAH(Goal).

Evaluating the Transformed Program. Various predicates of the transformed pro-

gram should be declared as tabled. For a predicate p/n, the declaration is table

p(1,..., n,or/3-zero/1), which indicates that answer subsumption is used to form

the disjunct of multiple explanations. At a minimum, the predicate of the goal and

all the predicates appearing in negative literals should be tabled with answer sub-

sumption. However, it is usually better to table every predicate whose answers have

multiple explanations and are going to be reused often.

5.1 PITA Library Functions for the General Probabilistic Case

In the case of general probabilistic programs, the data structure for representing

probabilistic information is a Binary Decision Diagram. With such a data structure,

we can represent the explanations for the queries in a form in which they are

mutually exclusive and so the computation of the probability can be performed by

an effective dynamic programming algorithm.

The predicates that manipulate the data structure in this case manipulate BDDs.

In our implementation, these calls provide a Prolog interface to the functions in the

CUDD C library (http://vlsi.colorado.edu/~fabio/CUDD). The predicates for

interfacing with CUDD are

• init, end : for allocation and deallocation of a BDD manager, a data structure

used to keep track of the memory for storing BDD nodes;
• zero(-B), one(-B), and(+B1, +B2, -B), or(+B1, +B2, -B), not(+B1, -B):

Boolean operations between BDDs;

6 PITA(IND,EXC)

As discussed in Section 2, general Probabilistic Logic Programming requires the

computation of the probability of DNF formulas – a difficult problem. The PRISM

system avoids this complexity by imposing special requirements on the form of a

program it can correctly evaluate. These requirements are (Sato et al. 2010)

• the probability of a conjunction (A,B) is computed as the product of the

probabilities of A and B (independence assumption)
• the probability of a disjunction (A;B) is computed as the sum of the proba-

bilities of A and B (exclusiveness assumption).

It is possible to write programs so that these requirements are not met. For example,

consider the program

p← a, b. a : 0.3 ∨ b : 0.4.

10 F. Riguzzi and T. Swift

This program does not satisfy the independence assumption because the con-

junction a, b has probability 0, since a and b are never true in the same world.

PITA(PROB) correctly gives probability 0 for p while PRISM returns probability

0.12. In this case the conjunction (a, b) is inconsistent and, while PITA(PROB)

automatically recognizes it, the inconsistency must be detected and the clause re-

moved for PRISM to return the correct probability. The following example also

does not satisfy the independence assumption because a and b both depend on c.

PITA(PROB) returns 0.2 for the probability of q while PRISM returns 0.04.

q ← a, b. a← c. b← c. c : 0.2.

As a final example, the following program violates the exclusiveness assumption

as the two clauses for the ground atom q have non-exclusive bodies

q ← a. q ← b. a : 0.2. b : 0.4.

These restrictions required by PRISM simplify considerably the computation since

we can now ignore the dependencies between the explanations of different subgoals.

PITA can be optimized for PRISM-style programs by simplifying the program

transformation it uses, and by implementing simpler library functions. The clause

Cr = H1 : α1 ∨ . . . ∨ Hn : αn ← L1, . . . , Lm is transformed into the set of clauses

PITAP (Cr)

PITAP (Cr, 1) = PITAH(H1)← one(DD0),

P ITAB(L1), and(DD0, D1, DD1), . . . ,

P ITAB(Lm), and(DDm−1, Dm, DDm),

equality([α1, . . . , αn], 1, DD),

and(DDm, DD,D).

. . .

P ITAP (Cr, n) = PITAH(Hn)← one(DD0),

P ITAB(L1), and(DD0, D1, DD1), . . . ,

P ITAB(Lm), and(DDm−1, Dm, DDm),

equality([α1, . . . , αn], n,DD),

and(DDm, DD,D).

The auxiliary data structure stored in the extra subgoal argument is no longer a

BDD, but simply a real number that represents the probability of a ground instan-

tiation of that subgoal. The library functions are now simple Prolog predicates.

equality(Probs,N, P)← nth(N,Probs, P).

or(A,B,C)← C is A+B. and(A,B,C)← C is A ∗B.

not(P, P1)← P1 is 1− P.

zero(0.0). one(1.0).

ret prob(P, P).

We call the resulting algorithm PITA(IND,EXC).

An example of a program satisfying the PRISM requirements encodes a Hidden

Markov Model (HMM), a graphical model with a sequence of unobserved state

variables, a sequence of observed output variables, and where each state variable

The PITA System 11

5 10 15
10

−3

10
−2

10
−1

10
0

10
1

10
2

N

T
im

e
 (

s)

PITA(IND,EXC)
PRISM

(a) PITA(IND,EXC) and PRISM on ran-
dom sequences.

5 10 15
10

−3

10
−2

10
−1

10
0

10
1

10
2

N

T
im

e
 (

s)

PITA(IND,EXC)
PRISM

(b) PITA(IND,EXC) and PRISM on re-
peated sequences.

Fig. 1. Times for computing P (hmm(< seq >)) as a function of sequence length. Missing
points at the beginning of the X-axis correspond to a time smaller than 10−6 seconds,
missing points at the end of the X-axis correspond to a memory error. The experiments
were performed on a Core 2 Duo E6550 (2333 MHz) processor.

depends only on its preceding state. HMMs have a wide range of applications, in-

cluding the modeling of DNA sequences. The following program, taken from (Chris-

tiansen and Gallagher 2009) models DNA sequences using three states:

hmm(O) ← hmm1(,O).

hmm1(S,O)← hmm(q1,[],S,O).

hmm(end,S,S,[]).

hmm(Q,S0,S,[L|O])← Q \ = end, succ(Q,Q1,S0), out(Q,L,S0),

hmm(Q1,[Q|S0],S,O).

succ(q1,q1, S):1/3 ∨ succ(q1,q2, S):1/3 ∨ succ(q1,end, S):1/3.

succ(q2,q1, S):1/3 ∨ succ(q2,q2, S):1/3 ∨ succ(q2,end, S):1/3.

out(q1,a, S):1/4 ∨ out(q1,c, S):1/4 ∨ out(q1,g, S):1/4 ∨ out(q1,t, S):1/4.

out(q2,a, S):1/4 ∨ out(q2,c, S):1/4 ∨ out(q2,g, S):1/4 ∨ out(q2,t, S):1/4.

In order to investigate the relative performances of PITA(IND,EXC) and PRISM,

we computed the execution time of queries to hmm/1 for increasing lengths of the

output sequence. Sequences used in Figure 1(a) are randomly generated, while those

in Figure 1(b) are repetitions of the sequence a,c,g,t. (Version 2.0 of Prism was

used in all the experiments.) In both cases, the costs for both algorithms grow

exponentially. Times for both systems are close for N up to 11; however beyond

N = 12, PITA(IND,EXC) begins to scale somewhat better than Prism, answering

queries through N = 18 while Prism can answer queries only through N = 14.

Beyond those numbers, both systems throw memory errors.

(Christiansen and Gallagher 2009) proposed a technique for speeding up query

answering by removing non-discriminating arguments. These are arguments that

play no role in determining the control flow of a logic program with respect to

goals satisfying given mode and sharing restrictions. The computation trees of the

resulting program are isomorphic to those of the original program and the results

of the original program can be reconstructed from a trace of the transformed pro-

gram. The authors show that the removal of non-discriminating arguments is very

useful with tabling because the calls to a tabled predicate differing only in the

12 F. Riguzzi and T. Swift

500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N

T
im

e
 (

s)

PITA(IND,EXC)
PRISM

(a) PITA(IND,EXC) and PRISM on ran-
dom sequences.

500 1000 1500 2000 2500
0

2

4

6

8

10

12

14

N

T
im

e
 (

s)

PITA(IND,EXC)
PRISM

(b) PITA(IND,EXC) and PRISM on re-
peated sequences.

Fig. 2. Times for computing P (hmm(< seq >) as a function of sequence length (reduced
program with non-discriminating arguments removed). The experiments were performed
on a Core 2 Duo E6550 (2333 MHz) processor.

non-discriminating arguments will merge into a single table that is much smaller

and has a higher chance of reuse. After removing non-discriminating arguments,

the HMM program above becomes

hmm(O)← hmm(q1,O).

hmm(end,[]).

hmm(Q,[L|O])← Q \ = end, succ(Q,Q1,S0),out(Q,L,S0),hmm(Q1,O).

plus the clauses defining succ/2 and out/2.

Figures 2(a) and 2(b) show the computation time for PITA(IND,EXC) and

PRISM on the reduced HMM program as a function of the sequence length for ran-

domly generated and repeating sequences. For random sequences, PITA(IND,EXC)

and Prism are competitive, with Prism slightly faster; however for the repeating

sequences PITA(IND,EXC) is much faster, and in fact scales well up to input se-

quences of length O(105). The reason for the scalability of PITA(IND,EXC) on

repeated sequences is apparently due to XSB’s use of trie-based tables, which al-

lows good indexing and space sharing for repeating subsequences. The tabling of

Prism, which is based on hash tables, loses discrimination in this case.

Computing the Viterbi Path. In HMMs, it is common to look for the sequence of

state values that most likely gave the output sequence, also called the Viterbi path,

while the probability of this sequence of states is called the Viterbi probability. This

is equivalent to finding the most probable explanation for the goal.

The Viterbi path and probability are computed by PRISM with the viterbif /3

predicate but can be computed also by PITA(IND,EXC) by modifying it so that the

probability data structure includes not only the highest probability of the subgoal

but also the most probable explanation for the subgoal. In this case the support

predicates are modified as follows:

equality(R,S,Probs,N,e([(R,S,N)],P))← nth(N,Probs,P).

or(e(E1,P1),e(E2,P2),e(E1,P1))← P1 >= P2, !.

or(e(E1, P1),e(E2,P2),e(E2,P2)).

The PITA System 13

and(e(E1,P1),e(E2,P2),e(E3,P3))← P3 is P1*P2,append(E1,E2,E3).

zero(e(null,0)). one(e([],1)). ret prob(B,B).

In this way we obtain PITAVIT(IND), which is also sound if the exclusiveness

assumption does not hold.

Figures 3(a) and 3(b) show times for PITAVIT(IND) and PRISM to compute

Viterbi paths and probabilities on the reduced HMM program. PITAVIT(IND) is

slower than PRISM for short random sequences and roughly the same on long

sequences. On repeated sequences it is much more scalable.

500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

N

T
im

e
 (

s)

PITAVIT(IND)
PRISM

(a) PITAVIT(IND) and PRISM on random
sequences.

500 1000 1500 2000 2500
0

2

4

6

8

10

N

T
im

e
 (

s)

PITAVIT(IND)
PRISM

(b) PITAVIT(IND) and PRISM on re-
peated sequences.

Fig. 3. Times for computing the Viterbi path and probability of hmm(< seq >) as a func-
tion of sequence length (reduced program with non-discriminating arguments removed).
The timings were taken on an Intel Core i5 (2.53 GHz) processor.

Counting Explanations PITA(IND,EXC) can be used to count explanations for

goals with a slight modification when explanations for different goals are not in-

compatible. To obtain PITA(COUNT), the only auxiliary predicate to be modified

is equality/3: equality(Probs, N, 1).

7 Application to Possibilistic Logic Programming

PITA also can be used to perform inference in Possibilistic Logic Programming

where a program is composed only of clauses of the form H : α← B1, . . . , Bn which

we interpret as possibilistic clauses of the form (H ← B1, . . . , Bn, α). For space

reasons we do not discuss negation here, however the publicly available version of

PITA computes possibilistic programs that are left-to-right dynamically stratified

(Section 4) according to the semantics of (Bauters et al. 2010).

The transformation PITAP used for the PRISM optimization can be used un-

changed provided the support predicates are defined as

equality([P, P0], N,P).

or(A,B,C)← C is max(A,B). and(A,B,C)← C is min(A,B).

zero(0.0). one(1.0). ret prob(P,P).

We obtain in this way PITA(POSS). The input list of the equality/3 predicate

contains two numbers because we used the same preprocessing code as for LPADs.

14 F. Riguzzi and T. Swift

Specializing the transformation for possibilistic logic programs would remove the

need for the equality/3 predicate.

To experiment with PITA(POSS), we consider the networks of biological concepts

of (De Raedt et al. 2007) and the definition of path/2 of Example 2. In these

networks the nodes encode biological entities and the edges conceptual relations

among them. In each program the edges are associated to a real number. The

programs have been sampled from a very large graph and contain 200, 400, . . .,

10000 edges. Sampling was repeated ten times, to obtain ten series of programs

of increasing size. In each program we query the possibility that the two genes

HGNC 620 and HGNC 983 are related.

We use PITA(COUNT) to compute the number of explanations for the query in

the first series of programs. In this problem, an explanation is a path from source

to target that does not contain loops. In fact, paths with loops are subsumed by

paths without loops so they do not contribute to the overall probability. Table 7

shows the number of paths for the networks in series 1 for which the computation

terminated in 24 hours. As you can see, the number of paths grows very fast.

Table 1. Number of paths.

Edges 200 400 600 800 1000 1200

Explanations 10 42 380 1,280 3,480 612,140

Figure 4(a) shows the average over the ten series of the execution time for comput-

ing the possibility of path(’HGNC 620’,’HGNC 983’) as a function of the number

of edges. Figure 4(b) shows the number of graphs solved for each graph size. These

figures also contain data for PITA(PROB), for the equivalent deterministic pro-

gram (i.e. computing whether there is a path between nodes) and for the system

posSmodels (Nicolas et al. 2006)3. As these figures show, computing the possibil-

ity is much easier than computing the general probability, which must solve the

disjoint sum problem to obtain answers. With respect to the posSmodels system,

PITA(POSS) is faster for smaller graphs and slower for larger ones, but the aver-

ages of posSmodels have been computed on less graphs since on some it gave a lack

of memory error.

8 Conclusions

We have shown how the probabilsitic inference system PITA can be easily adapted

for different settings. In particular, we have considered programs that respect the

independence and exclusion assumptions that are required by PRISM and show

how PITA can be modified to exploit these assumption. Preliminary results show

3 For PITA(PROB), we used the definition of path of (Kimmig et al. 2008) because it gave
smaller timings. PITA(IND,EXC) was not tested because this problem does not satisfy the
independence and exclusiveness requirements

The PITA System 15

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Size

T
im

e
 (

s)

PITAPoss
PITA
PosSmodels
DET

(a) Log scale.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1

2

3

4

5

6

7

8

9

10

Edges

A
n

sw
e

rs

PITAPoss
PITA
PosSmodels
DET

(b) Linear scale.

Fig. 4. Time for computing the least unsure path in a graph. The experiments were
performed on an Intel Core 2 Duo E6550 (2333 MHz) processor and 4 GB of RAM.

the algorithm to be faster than PRISM for complex queries to a naive encoding of

an HMM, while the performance on an optimized encoding depend on the input

data. Moreover, PITA can be used also for computing the Viterbi path, i.e., the

most probable explanation for a goal. Finally, we have shown how PITA can be

modified to perform inference on Possibilistic Logic Programs.

PITA is a supported package in version 3.3 of XSB, and handles programs that

include both negation and function symbols. Because PITA consists of a program

transformation plus library functions that implement an API for answer subsump-

tion, the approaches of general PLP, restricted PLP and Possibilistic Logic Pro-

gramming can be combined within a single program. Thus, if it is known that, say,

predicates in a given module satisfy independence and exclusiveness assumptions,

the module can use PITA(IND,EXC) and avoid the expense of BDD maintenance.

Furthermore, simple modifications to PITA would allow the use of general vs. re-

stricted PLP to be decided on a predicate basis, possibly supported in the future

by an optimizing compiler that could check exclusiveness of clauses, and indepen-

dence of literals within the body of a clause. This approach is not only general,

but portable. For Prologs that implement tabling, the additional effort needed for

answer subsumption is relatively small so that implementations of PITA need not

be restricted to XSB.

Finally, we believe that the techniques presented can be applied also to Soft

Constraint Logic Programming (SCLP) (Bistarelli and Rossi 2001), as advocated

in (Bistarelli et al. 2007). In this case, PITA’s API to answer subsumption would

interface with a constraint handling system rather than to BDDs or to simple Prolog

predicates. In fact, PITA, PITA(IND,EXC) and PITA(POSS) can be as seen as

implementing SCLP over the semirings 〈P ,∨,∧, false , true〉, 〈[0, 1],+,×, 0, 1〉 and

〈[0, 1],max,min, 0, 1〉 respectively, where P is the set of propositional formulas built

over a fixed and finite set of propositions.

Acknowledgements The authors thank Henning Christiansen for his help in vali-

dating the experimental results that use removal of non-discriminating arguments.

The work of the first author has been partially supported by the Camera di Com-

mercio, Industria, Artigianato e Agricoltura di Ferrara, under the project titled

”Image Processing and Artificial Vision for Image Classifications in Industrial Ap-

plications”.

16 F. Riguzzi and T. Swift

References

Baral, C.,Gelfond, M., and Rushton, J. N. 2009. Probabilistic reasoning with answer
sets. Theor. Pract. of Log. Prog. 9, 1, 57–144.

Bauters, L., Schockaert, S., De Cock, M., and Vermeir, D. 2010. Possibilistic an-
swer set programming revisited. In Conference on Uncertainty in Artificial Intelligence.
AUAI Press.

Bistarelli, S., Montanari, U., Rossi, F., and Santini, F. 2007. Modelling multi-
cast QoS routing by using best-tree search in and-or graphs and soft constraint logic
programming. Electr. Notes Theor. Comput. Sci. 190, 3, 111–127.

Bistarelli, S. and Rossi, F. 2001. Semiring-based contstraint logic programming: syntax
and semantics. ACM Trans. Program. Lang. Syst. 23, 1, 1–29.

Christiansen, H. and Gallagher, J. P. 2009. Non-discriminating arguments and their
uses. In International Conference on Logic Programming. LNCS, vol. 5649. Springer,
55–69.

Dantsin, E. 1991. Probabilistic logic programs and their semantics. In Russian Confer-
ence on Logic Programming. LNCS, vol. 592. Springer, 152–164.

De Raedt, L., Demoen, B., Fierens, D., Gutmann, B., Janssens, G., Kimmig, A.,
Landwehr, N., Mantadelis, T., Meert, W., Rocha, R., Santos Costa, V., Thon,

I., and Vennekens, J. Towards digesting the alphabet-soup of statistical relational
learning. In NIPS2008 Workshop on Probabilistic Programming.

De Raedt, L., Kimmig, A., and Toivonen, H. 2007. ProbLog: A probabilistic Prolog
and its application in link discovery. In Internation Joint Conference on Artificial
Intelligence. 2462–2467.

Dubois, D., Lang, J., and Prade, H. 1991. Towards possibilistic logic programming.
In International Conference on Logic Programming. 581–595.

Dubois, D., Lang, J., and Prade, H. 1994. Possibilistic logic. In Handbook of logic in
artificial intelligence and logic programming,vol. 3, D. M. Gabbay, C. J. Hogger, and
J. A. Robinson, Eds. Oxford University Press, 439–514.

Dubois, D. and Prade, H. 2004. Possibilistic logic: a retrospective and prospective view.
Fuzzy Sets Syst. 144, 1, 3–23.

Kersting, K. and De Raedt, L. 2000. Bayesian logic programs. In Inductive Logic
Programming, Work in Progress Track.

Kimmig, A., Costa, V. S., Rocha, R., Demoen, B., and Raedt, L. D. 2008. On the
efficient execution of problog programs. In International Conference on Logic Program-
ming. LNCS, vol. 5366. Springer, 175–189.

Meert, W., Struyf, J., and Blockeel, H. 2009. CP-Logic theory inference with con-
textual variable elimination and comparison to BDD based inference methods. In In-
ternational Conference on Inductive Logic Programming. LNCS, vol. 5989. Springer,
96–109.

Nicolas, P., Garcia, L., Stéphan, I., and Lefèvre, C. 2006. Possibilistic uncertainty
handling for answer set programming. Ann. Math. Artif. Intell. 47, 1-2, 139–181.

Nieves, J. C., Osorio, M., and Cortés, U. 2007. Semantics for possibilistic disjunc-
tive programs. In International Conference on Logic Programming and Nonmonotonic
Reasoning. LNCS, vol. 4483. Springer, 315–320.

Osorio, M. and Nieves, J. C. 2009. Possibilistic well-founded semantics. In Mexican
International Conference on Artificial Intelligence. LNCS, vol. 5845. Springer, 15–26.

Poole, D. 1993. Logic programming, abduction and probability - a top-down anytime
algorithm for estimating prior and posterior probabilities. New Gener. Comput. 11, 3,
377–400.

The PITA System 17

Poole, D. 1997. The Independent Choice Logic for modelling multiple agents under
uncertainty. Artif. Intell. 94, 1–2, 7–56.

Poole, D. 2000. Abducing through negation as failure: stable models within the inde-
pendent choice logic. J. Log. Program. 44, 1-3, 5–35.

Riguzzi, F. 2007. A top down interpreter for LPAD and CP-logic. In Congress of the
Italian Association for Artificial Intelligence. LNAI, vol. 4733. Springer, 109–120.

Riguzzi, F. 2008. Inference with logic programs with annotated disjunctions under the
well founded semantics. In International Conference on Logic Programming. LNCS, vol.
5366. Springer, 667–771.

Riguzzi, F. 2009. Extended semantics and inference for the Independent Choice Logic.
Logic J. of the IGPL 17, 6, 589–629.

Riguzzi, F. 2010. SLGAD resolution for inference on Logic Programs with Annotated
Disjunctions. Fundam. Inform. 102, 3-4, 429–466.

Riguzzi, F. and Swift, T. 2010a. An extended semantics for logic programs with anno-
tated disjunctions and its efficient implementation. In Italian Conference on Computa-
tional Logic. CEUR Workshop Proceedings, vol. 598. Sun SITE Central Europe.

Riguzzi, F. and Swift, T. 2010b. Tabling and Answer Subsumption for Reasoning
on Logic Programs with Annotated Disjunctions. In Technical Communications of
the International Conference on Logic Programming. LIPIcs, vol. 7. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 162–171.

Santos Costa, V., Page, D., Qazi, M., and Cussens, J. 2003. CLP(BN): Constraint
logic programming for probabilistic knowledge. In Conference on Uncertainty in Arti-
ficial Intelligence. Morgan Kaufmann.

Sato, T. 1995. A statistical learning method for logic programs with distribution seman-
tics. In International Conference on Logic Programming. MIT Press, 715–729.

Sato, T., Zhou, N.-F., Kameya, Y., and Izumi, Y. 2010. PRISM Users Manual (Version
2.0). http://sato-www.cs.titech.ac.jp/prism/download/prism20.pdf.

Swift, T. 1999. Tabling for non-monotonic programming. Ann. Math. Artif. Intell. 25, 3-
4, 201–240.

Vennekens, J. and Verbaeten, S. 2003. Logic programs with annotated disjunctions.
Tech. Rep. CW386, K. U. Leuven.

Vennekens, J., Verbaeten, S., and Bruynooghe, M. 2004. Logic programs with
annotated disjunctions. In International Conference on Logic Programming. LNCS, vol.
3131. Springer, 195–209.

Zhou, N.-F. 2011. The language features and architecture of B-Prolog.
CoRR abs/1103.0812.

