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Abstract

Lifted inference aims at answering queries from statistical relational models
by reasoning on populations of individuals as a whole instead of considering
each individual singularly. Since the initial proposal by David Poole in 2003,
many lifted inference techniques have appeared, by lifting different algorithms
or using approximation involving different kinds of models, including parfactor
graphs and Markov Logic Networks. Very recently lifted inference was applied to
Probabilistic Logic Programming (PLP) under the distribution semantics, with
proposals such as LP 2 and Weighted First-Order Model Counting (WFOMC).
Moreover, techniques for dealing with aggregation parfactors can be directly
applied to PLP. In this paper we survey these approaches and present an exper-
imental comparison on five models. The results show that WFOMC outperforms
the other approaches, being able to exploit more symmetries.

Keywords: Probabilistic Logic Programming, Lifted Inference, Variable
Elimination, Distribution Semantics, ProbLog, Statistical Relational Artificial
Intelligence

1. Introduction

Statistical relational models [1, 2] describe domains with many individual
entities connected by uncertain relations. Reasoning with models of the real
world is often very costly due to the complexity of the models. However, some-
times the cost of reasoning can be reduced by exploiting symmetries in the
model. This is the task of “lifted” inference, that answers queries by reasoning
on populations of individuals as a whole instead of considering each individual
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singularly. The exploitation of the symmetries in the model can significantly
speed up inference.

Lifted inference was initially proposed by David Poole in 2003 [3]. Since then,
many techniques have appeared, lifting algorithms such as variable elimination
and belief propagation, using approximation and dealing with models such as
parfactor graphs and Markov Logic networks [4, 5, 6].

Lifted inference was applied to Probabilistic Logic Programming (PLP) only
very recently. The first work is [7], where the authors describe the Prolog
Factor Language (PFL), a representation in Prolog of first-order probabilistic
factor models. The authors also present an implementation of lifted variable
elimination and lifted belief propagation for PFL.

In PLP, most languages are based on the distribution semantics [8], such as
Probabilistic Horn Abduction [9], PRISM [10], Independent Choice Logic [11],
Logic Programs with Annotated Disjunctions [12], and ProbLog [13, 14]. Apply-
ing lifted inference to PLP languages under the distribution semantics (PLPDS)
is problematic because the conclusions of different rules are combined with noisy-
OR that requires aggregations at the lifted level when existential variables are
present. For example, consider the following ProbLog program from [15]:

p :: famous(Y).
popular(X) :- friends(X, Y), famous(Y).

where p is a real value corresponding with the probability of the probabilistic
fact. In this case P (popular(john)) = 1 − (1 − p)m where m is the number
of friends of john. This is because the body contains a variable not appearing
in the head, that is thus existentially quantified. A grounding of the atom in
the head of this clause represents the noisy-OR (without leak probability) of a
number of ground bodies. In this case we do not need to know the identities of
these friends, we just need to know how many there are. Hence, we need not to
ground the clauses.

An exhaustive survey about lifted inference was proposed in [16]. However
its focus is on Statistical Relational Learning and probabilistic graphical models
techniques in general and does not handle specifically existential variables and
aggregation.

The first works applying lifted inference directly to PLPDS appeared in 2014.
In [17] the authors proposed LP2 (for Lifted Probabilistic Logic Programming)
that answers queries to ProbLog by translating the program into PFL and using
an extended GC-FOVE lifted variable elimination algorithm.

Weighted First Order Model Counting (WFOMC) [18] instead uses a Skolem-
ization algorithm for model counting problems that eliminates existential quan-
tifiers from a first-order logic theory without changing its weighted model count.
As such, it can be applied to PLPDS.

Aggregation is also treated in [19] where the authors proposed an aggregation
operator for first directed first-order models that is independent of the sizes of
the populations, in order to handle contexts in which a parent random variable
is parameterized by logical variables that are not present in a child random
variable.

2



In this paper, we survey these three proposals and experimentally evaluate
them. The results show that inference time linearly increases with the number of
individuals of the domain for approaches exploiting lifted variable elimination,
while it is constant in case of WFOMC, thus indicating that the latter is able
to lift a larger portion of the model.

The paper is organized as follows. Section 2 introduces preliminaries regard-
ing ProbLog, PFL, Causal Independence Variable Elimination, and GC-FOVE.
Section 3 presents LP2 and shows the translation of ProbLog into PFL. Section
4 illustrates the use of aggregation parfactors for ProbLog. Section 5 describes
WFOMC. Section 6 discusses how to apply these algorithms to non-tight logic
programs. Section 7 reports the experiments performed and Section 8 concludes
the paper.

2. Preliminaries

2.1. Notation
Lifted inference techniques exploit concepts from relational logic and proba-

bilistic theory. Unfortunately these two branches of mathematics sometimes use
the same term to indicate different concepts. For example the word “variable”
means logical variable in the context of relational logic, whereas it means ran-
dom variable in the field of probabilistic theory. In order to avoid confusion, we
use different fonts to represent different meanings. Table 1 shows the notation
used throughout the paper.

Concept Notation
Logical variable Typewriter upper case letters X, Y, . . .
Vector of logical variables Typewriter bold case letters X, Y, . . .
Constant Typewriter lower case letters x, y, . . .

Factor Italic upper case letters or (if the context is
clear) Greek letters X, φ,. . .

Logical atom/predicate symbol, random
variable (RV) Italic upper case letters X, Y , . . .

Value assigned to RV Italic lower case letters x, y, . . .
Vector of RVs Bold italic upper case letters X, Y , . . .
Value assigned to vector of (parameterized)
RVs Bold italic lower case letters x, y, . . .

Parameterized random variable (PRV) or
parfactor Italic sans serif upper case letters X , Y , . . .

Vector of PRVs Bold italic sans serif upper case letters X ,
Y , . . .

Set of constraints Calligraphic C
Code Typewriter

Table 1: Notation used in this paper.

2.2. ProbLog
ProbLog [13, 14] is a PLP language with a simple syntax and can be con-

sidered as the prototype of PLPDS. A ProbLog program consists of a set of
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rules (a normal logic program) plus a set of ground probabilistic facts. Ground
probabilistic facts are facts annotated with a real value p in the interval [0, 1]
and are written as p :: F . A probabilistic atom is an atom that depends on
probabilistic facts.

ProbLog provides syntactic sugar for the compact definition of a set of prob-
abilistic facts with a single clause. For instance, if a set of ground probabilistic
facts has the same probability p, it can be defined intensionally through the syn-
tax p :: F (X1, X2 . . . , Xn) :– B, where F (X1, X2, . . . , Xn) is the non-ground atom
that identifies the set of probabilistic ground facts, and B is a conjunction of
non-probabilistic atoms, as shown in Example 1. Such rules must be range-
restricted: all variables in the head of a rule should also appear in a positive
literal in the body.

Example 1 (Running example). The following program is inspired by the
workshop attributes problem of [5]. It models the organization of a workshop
where a number of people have been invited. series indicates whether the work-
shop is successful enough to start a series of related meetings while attends(P)
indicates whether person P will attend the workshop. Note that all rules are
range-restricted, i.e., all variables in the head appear also in a positive literal in
the body.

series :- self.
series :- attends(P).
attends(P) :- at(P,A).
0.1::self.
0.3::at(P,A) :- person(P), attribute(A).

A workshop becomes a series either because of its own merits with a 10% proba-
bility (represented by the probabilistic fact self) or because people attend. People
attend the workshop depending on the workshop’s attributes such as location,
date, fame of the organizers, etc (modeled by the probabilistic fact at(P,A)).
The probabilistic fact at(P,A) represents whether person P attends because of
attribute A. Note that the last statement corresponds to a set of ground prob-
abilistic facts, one for each person P and attribute A. For the sake of brevity
we omit the (non-probabilistic) facts describing the person/1 and attribute/1
predicates.

A ProbLog program specifies a probability distribution over normal logic
programs called worlds as defined by the distribution semantics. In this work,
we consider the semantics in the case of no function symbols, and assume all
worlds have a two-valued well-founded model.

An atomic choice specifies whether a ground probabilistic fact pi :: Fi is
included in a world (with probability pi) or not (with probability 1 − pi). A
total choice C contains an atomic choice for each ground probabilistic fact and
identifies a world, i.e. a normal logic program W = F ∪ R, where F is the set
of facts to be included according to C and R denotes the rules in the ProbLog
program. Let W be the set of all possible worlds. The probability of a world is
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the product of the probabilities of the individual atomic choices contained in the
corresponding total choice C, P (C) = Πiqi where qi = pi if the fact is chosen
and qi = 1 − pi if the fact is not chosen. This is correct under the assumption
that atomic choices are pairwise independent. Given a query (a ground atom)
Q, the conditional probability of Q given a world W P (Q|W ) is 1 if Q is true in
the well-founded model ofW and 0 otherwise. Hence, the probability of a query
is P (Q) =

∑
W∈W P (Q,W ) =

∑
W∈W P (Q|W )P (W ) =

∑
W∈W:W |=Q P (W ).

2.3. The Prolog Factor Language
The Prolog Factor Language (PFL) [7] is an extension of Prolog for repre-

senting first-order probabilistic models. It already includes a tool for performing
lifted inference such as the GC-FOVE algorithm [20], that is used in the exper-
imental evaluation in Section 7.

Most graphical models such as Bayesian and Markov Networks can concisely
represent a joint distribution by encoding it as a set of factors. The probability
of a set of variables X taking value x can be expressed as the product of n
factors as:

P (X = x) =

∏
i=1,...,n φi(xi)

Z

where xi is a sub-vector of x on which the i-th factor depends and Z is a nor-
malization constant (i.e. Z =

∑
x

∏
i=1,...,n φi(xi)). For example, in Bayesian

networks there is a factor for each variable Xi that is a function of the variable
and its parents Xj . . . Xk, such that φi(Xi, Xj , . . . , Xk) = P (Xi|Xj . . . Xk) and
Z = 1. Often, in a graphical model, the same factors appear repeatedly in
the network, thus we can parameterize these factors in order to simplify the
representation.

A parameterized random variable (PRV) represents a set of random variables,
one for each possible ground substitution to all of its parameters. A parametric
factor or parfactor [21] is a triple 〈C,V, F 〉 where C is a set of inequality con-
straints on parameters (logical variables), V is a set of parameterized random
variables and F is a factor that is a function from the Cartesian product of
ranges of parameterized random variables in V to real values. A parfactor is
also represented as F (V)|C or F (V) if there are no constraints. A PRV V is of
the form V |C, where V = P (X1, . . . , Xn) is a non-ground atom and C is a set of
constraints on logical variables X = {X1, . . . , Xn}. Each PRV represents the set
of random variables {P (x)|x ∈ C}, where x is the tuple of constants (x1, . . . , xn).
Given a PRV V , we use RV (V ) to denote the set of random variables it rep-
resents. Each ground atom is associated with one random variable, which can
take any value in range(V ).

The Prolog Factor Language [7] extends Prolog to support probabilistic
reasoning with parametric factors. A PFL factor is a parfactor1 of the form
Type F ; φ ; C, where Type refers to the type of the network over which the

1The terminology is a bit unfortunate but we preferred to stick with the one most widely
used.
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parfactor is defined (bayes for directed networks ormarkov for undirected ones);
F is a sequence of Prolog goals each defining a set of random variables under the
constraints in C (the arguments of the factor). Let us call L the set of all logical
variables in F , then C is a list of Prolog goals that impose bindings on L (the
successful substitutions for the goals in C are the valid values for the variables
in L). φ is the table defining the factor in the form of a list of real values. By
default, all random variables are Boolean but a different domain may be defined.
Each parfactor represents the set of its groundings. To ground a parfactor, all
variables of L are replaced with the values permitted by constraints in C. The
set of ground factors defines a factorization of the joint probability distribution
over all random variables.

Example 2 (PFL Program). A version of the workshop attributes problem
presented in Example 1 can be modeled by a PFL program such as

bayes series, attends(P) ; [0.51, 0.49, 0.49, 0.51] ;
[person(P)].

bayes attends(P), at(P,A) ; [0.7, 0.3, 0.3, 0.7] ;
[person(P),attribute(A)].

The first PFL factor has the Boolean random variables series and attends(P)
as arguments, [0.51,0.49,0.49,0.51] as table and [person(P)] as constraint.

This model is not equivalent to the one of Example 1, but it corresponds to
a ProbLog program that has only the second and the third clause of Example 1.
Equivalent models will be given in Examples 4 and 7.

2.4. Variable Elimination
Variable Elimination (ve) [22, 23] is an algorithm for probabilistic inference

from graphical models. ve takes as input a set of factors F , an elimination order
ρ, a query variable X and a list y of observed values. After setting the observed
variables in all factors to their corresponding observed values, ve eliminates
the random variables from the factors one by one until only the query variable
X remains. This is done by selecting the first variable Z from the elimination
order ρ and then calling sum-out that eliminates Z by first multiplying all the
factors that include Z into a single factor and summing out Z from the newly
constructed factor. This procedure is repeated until ρ becomes empty. In the
final step, ve multiplies together the factors of F obtaining a new factor γ that
is normalized as γ(x)/

∑
x′ γ(x′) to give the posterior probability.

In many cases, we need to represent factors where a Boolean variable X with
parents Y is true if any of the Yi is true. In practice, each parent Yi has a noisy
inhibitor that independently blocks or activates Yi, so X is true if either any
of the causes Yi holds true and is not inhibited. This is called noisy-OR gate.
Handling this kind of factor is a non trivial problem.

A noisy-OR factor can be expressed as a combination of factors by intro-
ducing intermediate variables that represent the effect of each cause given the
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inhibitor. For example, if X has two causes Y1 and Y2, we can introduce a vari-
able X ′ to account for the effect of Y1 and X ′′ for Y2, and the factor φ(Y1, Y2, X)
can be expressed as

φ(y1, y2, x) =
∑

x′∨x′′=x

ψ(y1, x
′)γ(y2, x

′′) (1)

where the summation is over all values x′ and x′′ ofX ′ andX ′′ whose disjunction
is equal to x. The X variable is called convergent as it is where independent
contributions from different sources are collected and combined. Non-convergent
variables will be called regular variables.

Representing factors such as φ with ψ and γ is advantageous when the num-
ber of parents grows large, as the combined size of the component factors grows
linearly, instead of exponentially.

Unfortunately, a straightforward use of ve for inference would lead to con-
struct O(2n) tables where n is the number of parents and the sum (1) will
have an exponential number of terms. A modified algorithm, called ve1 [23],
combines factors through a new operator ⊗:

φ⊗ ψ(E1 = α1, . . . , Ek = αk,A,B1,B2) =∑
α11∨α12=α1

. . .
∑

αk1∨αk2=αk

φ(E1 = α11, . . . , Ek = αk1,A,B1)ψ(E1 = α12, . . . , Ek = αk2,A,B2) (2)

Here, φ and ψ are two factors that share convergent variables E1 . . . Ek, A is
the list of regular variables that appear in both φ and ψ while B1 and B2

are the lists of variables appearing only in φ and ψ respectively. By using the
⊗ operator, factors encoding the effect of parents can be combined in pairs,
without the need to apply (1) on all factors at once.

Factors containing convergent variables are called heterogeneous while the
remaining factors are called homogeneous. Heterogeneous factors sharing con-
vergent variables must be combined with the operator ⊗, called heterogeneous
multiplication.

Algorithm ve1 exploits causal independence by keeping two lists of factors:
a list of homogeneous factors F1 and a list of heterogeneous factors F2. Pro-
cedure sum-out is replaced by sum-out1 that takes as input F1 and F2 and
a variable Z to be eliminated. First, all the factors containing Z are removed
from F1 and combined with multiplication to obtain factor φ. Then all the
factors containing Z are removed from F2 and combined with heterogeneous
multiplication obtaining ψ. If there are no such factors ψ = nil. In the latter
case, sum-out1 adds the new (homogeneous) factor

∑
z φ to F1, otherwise it

adds the new (heterogeneous) factor
∑

z φψ to F2. Procedure ve1 is the same
as ve with sum-out replaced by sum-out1 and with the difference that two
sets of factors are maintained instead of one.

However ve1 is not correct for any elimination order. Correctness can be
ensured by deputising the convergent variables: every such variable E is replaced
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by a new convergent variable E′ (called a deputy variable) in the heterogeneous
factors containing it, so that E becomes a regular variable. Finally, a new factor
ι(E,E′) is introduced, called deputy factor, that represents the identity function
between E and E′, i.e., it is defined by

ι(E,E′) ff ft tf tt
1.0 0.0 0.0 1.0

Deputising ensures that ve1 is correct as long as the elimination order is
such that ρ(E′) < ρ(E).

2.5. GC-FOVE
Work on lifting ve started with FOVE [3] and led to the definition of C-

FOVE [5]. C-FOVE was refined in GC-FOVE [20], which represents the state
of the art. Then, Gomes and Costa [7] adapted GC-FOVE to PFL.

First-order Variable Elimination (FOVE) [3, 4] computes the marginal prob-
ability distribution for a query random variable by repeatedly applying operators
that are lifted counterparts of ve’s operators. Models are in the form of a set
of parfactors that are essentially the same as in PFL.

GC-FOVE tries to eliminate all (non-query) PRVs in a particular order by
applying the following operations:

1. Lifted Sum-Out, that excludes a PRV from a parfactor φ if the PRV only
occurs in φ;

2. Lifted Multiplication, that multiplies two aligned parfactors. Matching
variables must be properly aligned and the new coefficients must be com-
puted taking into account the number of groundings in the constraints
C;

3. Lifted Absorption, that eliminates n PRVs that have the same observed
value. If these operations cannot be applied, a chosen parfactor must be
split so that some of its PRVs match another parfactor.

If no lifted operation can be executed, GC-FOVE completely grounds the PRVs
and parfactors and performs inference on the ground level.

GC-FOVE considers also PRVs with counting formulas, introduced in C-
FOVE [5]. A counting formula takes advantage of symmetries existing in fac-
tors that are products of independent variables. It represents a factor of the
form φ(P (x1), P (x2), . . . , P (xn)), where all PRVs have the same domain, as
φ(#X[P (X)]). The factor implements a multinomial distribution, such that its
values depend on the number of variables n and the domain size. The lifted
counted variable is named a PCRV. PCRVs may result from summing-out, when
we obtain parfactors with a single PRV, or through Counting Conversion that
searches for factors of the form φ(

∏
i(S(Xj)P (Xj, Yi))) and counts on the occur-

rences of Yi.
GC-FOVE employs a constraint-tree to represent arbitrary constraints C,

whereas the PFL simply uses sets of tuples. Arbitrary constraints can capture
more symmetries in the data, which potentially offers the ability to perform
more operations at a lifted level.
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3. LP2

LP2 [17] is an algorithm for performing lifted inference in ProbLog that
translates the program into PFL and uses an extended GC-FOVE version for
managing noisy-OR nodes.

3.1. Translating ProbLog into PFL
In order to translate ProbLog into PFL, the program must be tight, i.e.

must not contain positive cycles (see Section 6). If this condition if fulfilled, the
ProbLog program can be converted first into a Bayesian network with noisy-
OR nodes. Here we adapt the conversion for Logic Programs with Annotated
Disjunctions presented in [12, 24] to the case of ProbLog.

The first step is to generate the grounding of the ProbLog program. For each
atom A in the Herbrand base of the program, the Bayesian network contains a
Boolean random variable with the same name. Each probabilistic fact p :: A is
represented by a parentless node with the conditional probability table (CPT):

A f t
1-p p

For each ground rule Ri = H ← B1, . . . , Bn, not(C1), . . . , not(Cm) we add to the
network a random variable called Hi that has as parents the random variables
representing the atoms B1, . . . , Bn, C1, . . . , Cm and the following CPT:

Hi B1 = t, . . . , Bn = t, C1 = f, . . . , Cm = f all other columns
f 0.0 1.0
t 1.0 0.0

In practice Hi is the result of the conjunction of the random variables repre-
senting the atoms in the body. Then for each ground atom H in the Herbrand
base not appearing in a probabilistic fact, we add it to the network, with all Hi

in the ground rules with H in the head as parents and with CPT:

H at least one Hi = t all other columns
f 0.0 1.0
t 1.0 0.0

representing the result of the disjunction of the random variables Hi. These
families of random variables can be directly represented in PFL without the
need to first ground the program, thus staying at the lifted level.

Example 3 (Translation of a ProbLog program into PFL). The transla-
tion of the ProbLog program of Example 1 into PFL is

bayes series1, self; [1, 0, 0, 1] ; [].
bayes series2, attends(P); [1, 0, 0, 1]; [person(P)].
bayes series, series1, series2 ; [1, 0, 0, 0, 0, 1, 1, 1]; [].
bayes attends1(P), at(P,A); [1, 0, 0, 1]; [person(P),attribute(A)].
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bayes attends(P), attends1(P); [1, 0, 0, 1]; [person(P)].
bayes self; [0.9, 0.1]; [].
bayes at(P,A); [0.7, 0.3] ; [person(P),attribute(A)].

Notice that series2 and attends1(P) can be seen as or-nodes, since they are
in fact convergent variables. Thus, after grounding, factors derived from the
second and the fourth parfactor should not be multiplied together but should
be combined with heterogeneous multiplication.

To do so, we need to identify heterogeneous factors and add deputy variables
and parfactors. We thus introduce two new types of parfactors to PFL, het and
deputy. As mentioned before the type of a parfactor refers to the type of the
network over which that parfactor is defined. These two new types are used in
order to define a noisy-OR (Bayesian) network. The first parfactor is such that
its ground instantiations are heterogeneous factors. The convergent variables
are assumed to be represented by the first atom in the parfactor list of atoms.
Lifting identity is straightforward, it corresponds to two atoms with an identity
factor between their ground instantiations. Since the factor is fixed, it is not
indicated.

Example 4 (ProbLog program to PFL - LP2). The translation of the Pro-
log program of Example 1, shown in Example 3, is modified with the two new
factors het and deputy as shown below:

bayes series1p, self; [1, 0, 0, 1] ; [].
het series2p, attends(P); [1, 0, 0, 1]; [person(P)].
deputy series2, series2p; [].
deputy series1, series1p; [].
bayes series, series1, series2; [1, 0, 0, 0, 0, 1, 1, 1] ; [].
het attends1p(P), at(P,A); [1, 0, 0, 1]; [person(P),attribute(A)].
deputy attends1(P), attends1p(P); [person(P)].
bayes attends(P), attends1(P); [1, 0, 0, 1]; [person(P)].
bayes self; [0.9, 0.1]; [].
bayes at(P,A); [0.7, 0.3] ; [person(P),attribute(A)].

Here, series1p, series2p and attends1p(P) are the convergent deputy random
variables, and series1, series2 and attends1(P) are their corresponding new
regular variables. The fifth factor represents the OR combination of series1
and series2 to variable series.

GC-FOVE must be modified in order to take into account heterogeneous factors
and convergent variables. The ve algorithm must be replaced by ve1, i.e.,
two lists of factors must be maintained, one with homogeneous and the other
with heterogeneous factors. When eliminating variables, homogeneous factors
have higher priority and are combined with homogeneous factors only. Then
heterogeneous factors are taken into account and combined before starting to
mix factors from both types, to produce a final factor from which the selected
random variable is eliminated.
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Operator het-multiply
Inputs:
(1) G1 = φ1(A1)|C1: a parfactor in model G with convergent variables

A1 = {A11, . . . ,A1k}
(2) G2 = φ2(A2)|C2: a parfactor in model G with convergent variables

A2 = {A21, . . . ,A2k}
(3) θ = {X1 → X2}: an alignment between G1 and G2

Preconditions:
(1) for i = 1, 2: Yi = logvar(Ai) \ Xi is count-normalized w.r.t. Xi in Ci
Output: φ(A)|C, such that
(1) C = C1θ ./ C2
(2) A = A1θ ∪ A2

(3) Let A be (A1, . . . ,Ak,B) with Aj = A1jθ = A2j for j = 1, . . . , k,
B the set of regular variables

(4) for each assignment a = (a1, . . . , ak, b) to A with b1 = πA1θ(b), b2 = πA2
(b)

φ(a1, . . . , ak, b) =∑
a11∨a21=a1 . . .

∑
a1k∨a2k=ak φ1(a11, . . . , a1k, b1)

1/r2φ2(a21, . . . , a2k, b2)
1/r1

with ri = CountYi|Xi (Ci)
Postcondition: G ∼ G \ {G1,G2} ∪ {het-multiply(G1,G2, θ)}

Operator 1: Operator het-multiply. Function Count is defined in [20].

Lifted heterogeneous multiplication (see Operator 1) considers the case in
which the two factors share convergent random variables. PRVs must be count-
normalized, i.e., the corresponding parameters must be scaled to take into ac-
count domain size and number of occurrences in the parfactor. This involves
the use of the function Count: CountY|X(x) returns the number of values for
Y that co-occur with value x, where x ∈ C. If this number is the same for
each x ∈ C then we can write CountY|X(C) and we can say that Y is count-
normalized w.r.t. X in C. PRVs are then aligned and the joint domain is com-
puted as the natural join between the set of constraints. Following standard
lifted multiplication, we assume the same PRV will have a different instance
in each grounded factor. We thus proceed as in the ground case, and, for
each case (a11, . . . , a1k, b1, b2), we sum the potentials obtained by multiplying
φ1(a11, . . . , a1k, b1) and φ2(a11, . . . , a1k, b2).

Example 5. Consider the heterogeneous parfactors G1 = φ1(P (X1))|C1 and
G2 = φ2(P (X2), Q(X2, Y2))|C2 and suppose that we want to multiply G1 and
G2; P (X) is convergent in G1 and G2; {X1 → X2} is an alignment between G1

and G2; Y2 is count-normalized w.r.t. X2 in C2; r1 = CountY1|X1(C1) = 2 and
CountY2|X2(C2) = 3.

Then het-multiply(G1,G2, {X1 → X2}) = φ(P (X2), Q(X2, Y2))|C with φ
given by:

φ(P (X2), Q(X2, Y2))
ff φ1(f)1/3φ2(f,f)1/2

ft φ1(f)1/3φ2(f,t)1/2

tf φ1(f)1/3φ2(t,f)1/2 + φ1(t)1/3φ2(f,f)1/2 + φ1(t)1/3φ2(t,f)1/2

tt φ1(f)1/3φ2(t,t)1/2 + φ1(t)1/3φ2(f,t)1/2 + φ1(t)1/3φ2(t,t)1/2

11



Operator het-sum-out
Inputs:
(1) G = φ(A)|C: a parfactor in model G
(2) let A = (A1, . . . ,Ak,Ak+1,B) where A1, . . . ,Ak are convergent variables
(3) Ak+1 is the variable to be summed out
Preconditions:
(1) For all PRVs V, other than Ak+1|C, in G: RV (V) ∩RV (Ak+1|C) = ∅
(2) Ak+1 contains all the logvars X ∈ logvar(A) for which πX(C) is not a singleton
(3) Xexcl = logvar(Ak+1) \ logvar(A \ Ak+1) is count-normalized w.r.t.

Xcom = logvar(Ak+1) ∩ logvar(A \ Ak+1) in C
Output: φ′(A′)|C′, such that
(1) A′ = A \ Ak+1

(2) C′ = πX(C)
(3) for each assignment (a′, b) = (a′1, . . . , a

′
k, b) to A′

φ′(a′, b) =(∑
a≤a′

∑
ak+1∈range(Ak+1)

Mul(Ak+1, ak+1)φ(a1, . . . , ak, ak+1, b)
)r
−

−
∑

a<a′ φ′(a1, . . . , ak, b) with
r = CountXexcl|Xcom (C)

Postcondition: PG\{G}∪{het-sum-out(G,(A1,...,Ak),Ak+1)} =
∑
RV (Ak+1)

PG

Operator 2: Operator het-sum-out. The order ≤ between truth values is the obvious one
and between tuples of truth values is the product order induced by ≤ between values, i.e.,
(a1, . . . , ak) ≤ (a′1, . . . , a

′
k) iff ai ≤ a′i for i = 1, . . . , k and a < a′ iff a ≤ a′ and a′ 6≤ a.

Function Mul is defined in [20].

The sum-out operator must be modified as well to account for the case that
random variables must be summed out from a heterogeneous factor. Let us sup-
pose we want to eliminate the PRV Q(X, Y) from the parfactor φ(P (X), Q(X, Y))|C
with C = {x1, x2} × {y1, y2}. This parfactor stands for four ground factors of
the form φ(P (xi), Q(xi, yj)) for i, j = 1, 2 where P (xi) is convergent. Given an
individual xi, the two factors φ(P (xi), Q(xi, y1)) and φ(P (xi), Q(xi, y2)) share a
convergent variable and cannot be multiplied together with regular multiplica-
tion. Therefore, in order to sum out Q(X, Y), heterogeneous multiplication must
first be used to combine the two factors. To avoid generating first the ground
factors, we have added to GC-FOVE het-sum-out (Operator 2) that performs
the combination and the elimination of a random variable at the same time.

Example 6. Consider the heterogeneous parfactor G = φ(R,P (X), Q(X, Y))|C
and suppose that we want to sum out Q(X, Y), that R and P (X) are conver-
gent, that Y is count-normalized w.r.t. X and that CountY|X(C) = 2. Then
het-sum-out(G, (R,P (X)), Q(X, Y)) = φ′(R,P (X))|C′ with φ′ given by

φ′(R,P (X))
ff (φ(f,f,f) + φ(f,f,t))2

ft (φ(f,t,f) + φ(f,t,t) + φ(f,f,f) + φ(f,f,t))2 − φ′(f, f)
tf (φ(t,f,f) + φ(t,f,t) + φ(f,f,f) + φ(f,f,t))2 − φ′(f, f)
tt (φ(t,t,f) + φ(t,t,t) + φ(t,f,f) + φ(t,f,t) + φ(f,t,f) + φ(f,t,t) + φ(f,f,f) + φ(f,f,t))2−

φ′(t,f)− φ′(f,t)− φ′(f,f)

12



4. Lifted Inference with Aggregation Parfactors

Kisynski and Poole [19] proposed an approach based on aggregation parfac-
tors instead of parfactors. Aggregation parfactors are very expressive and can
represent different kind of causal independence models, where noisy-OR and
noisy-MAX are special cases. They are of the form 〈C,P,C , FP ,�, CA〉, where
P and C are parameterized random variables which share all the parameters
except one - let’s say A which is in P but not in C - and the range of P is a
subset of that of C ; C and CA are a set of inequality constraints respectively
not involving and involving A; FP is a factor from the range of P to real values
and � is a commutative and associative deterministic binary operator over the
range of C .

When � is the MAX operator, of which the OR operator is a special case,
a total ordering ≺ on the range of C can be defined. An aggregation parfac-
tor can be replaced with two parfactors of the form 〈C ∪ CA, {P,C’}, FC〉 and
〈C, {C ,C’}, F∆〉, where C’ is an auxiliary parameterized random variable that
has the same parameterization and range as C . Let v be an assignment of values
to random variables, then FC(v(P),v(C’)) = FP (v(P)) when v(P) � v(C’), 0
otherwise, while F∆(v(C ),v(C’)) = 1 if v(C ) = v(C’), −1 if v(C ) is equal to a
successor of v(C’) and 0 otherwise.

When reasoning with ProbLog, we can use aggregation parfactors to model
the dependency between the head of a rule and the body, when the body contains
a single literal with an extra variable. In this case, given a grounding of the head,
the contribution of all the ground clauses with that head must be combined by
means of an OR. Since aggregation parfactors are replaced by regular parfactors,
the technique can be used to reason with ProbLog by converting the program
into PFL with these additional parfactors. The conversion is possible only if the
ProbLog program is tight, i.e. does not contain positive cycles (see Section 6).

In the case of ProbLog the range of PRVs is binary and � is OR. For
example, the clause series2:- attends(P) can be represented with the ag-
gregation parfactor 〈∅, attends(P), series2, FP ,∨, ∅〉, where FP (0) = 0 and
FP (1) = 1. This is replaced by the parfactors 〈∅, {attends(P), series2p}, FC〉,
〈∅, {series2, series2p}, F∆〉 with FC(0, 0) = 1, FC(0, 1) = 1, FC(1, 0) = 0,
FC(1, 1) = 1, F∆(0, 0) = 1, F∆(0, 1) = 0, F∆(1, 0) = −1 and F∆(1, 1) = 1.

When the body of a rule contains more than one literal and/or more than
one extra variable with respect to the head, the rule must be first split into
multiple rules (adding auxiliary predicate names) satisfying the constraint.

Example 7 (ProbLog program to PFL - aggregation parfactors). The
program of Example 1 using the above encoding for aggregation parfactors is

bayes series1p, self; [1, 0, 0, 1] ; [].
bayes series2p, attends(P) [1, 0, 1, 1]; [person(P)].
bayes series2, series2p; [1, 0, -1, 1]; [].
bayes series1, series1p; [1, 0, -1, 1]; [].
bayes series, series1, series2; [1, 0, 0, 0, 0, 1, 1, 1] ; [].
bayes attends1p(P), at(P,A); [1, 0, 1, 1];
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[person(P),attribute(A)].
bayes attends1(P), attends1p(P); [1, 0, -1, 1]; [person(P)].
bayes attends(P), attends1(P); [1, 0, 0, 1]; [person(P)].
bayes self; [0.9, 0.1]; [].
bayes at(P,A); [0.7, 0.3] ; [person(P),attribute(A)].

Thus, by using the technique of [19], we can perform lifted inference in ProbLog
by a simple conversion to PFL, without the need to modify PFL algorithms.

5. Weighted First Order Model Counting

A different approach to lifted inference for PLPDS concerns the use of
Weighted First Order Model Counting (WFOMC). WFOMC takes as input
a triple (∆,w,w), where ∆ is a sentence in First Order Logic and w and w are
weight functions which associate a real number to positive and negative literals
respectively. Given a triple (∆,w,w) and a query φ, its probability P (φ) is
given by

P (φ) =
WFOMC(∆ ∧ φ,w,w)

WFOMC(∆,w,w)

Here, WFOMC(∆,w,w) corresponds to the sum of the weights of all Herbrand
models of ∆, where the weight of a model is the product of its literal weights.
Hence WFOMC(∆,w,w) =

∑
ω|=∆

∏
L∈ω0

w(pred(L))
∏

L∈ω1
w(pred(L))

where ω0 and ω1 are respectively false and true literals in the interpretation
ω and pred maps literals L to their predicate. Two lifted algorithms exist for
exact WFOMC, one based on first-order knowledge compilation [6, 25, 26], and
the other based on first-order DPLL search [27]. They both require the input
theory to be in first-order CNF. A first-order CNF is a theory consisting of a
conjunction of sentences of the form ∀X1, ...,∀Xn, L1 ∨ ... ∨ Lm.

To encode a ProbLog program in a first-order CNF, Clark’s completion [28]
must be applied. For tight logic programs [29] Clark’s completion is correct, in
the sense that every model of the logic program is a model of the completion,
and vice versa. The result is a set of rules in which each predicate is encoded
by a single sentence. ProbLog rules are of the form P (X) :– Bi(X, Yi) where
Yi is a variable that appears in the body Bi but not in the head P (X). The
corresponding sentence in the completion is ∀X, P (X) ⇔

∨
i ∃Yi, Bi(X, Yi). The

program must be acyclic in order to make the completion sound, thus it is
necessary to first remove positive loops [30].

Since WFOMC requires an input where existential quantifiers are absent,
in [18] the authors presented a sound and modular Skolemization procedure to
translate ProbLog programs into first-order CNF. Regular Skolemization cannot
be used because it introduces function symbols, that are problematic for model
counters. Therefore, existential quantifiers in expressions of the form ∃X, φ(X, Y)
are replaced by the following formulas [18]:

∀X.Z(X)
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∀Y,∀X, Z(Y) ∨ ¬φ(X, Y)

∀Y, S(Y) ∨ Z(Y)

∀Y,∀X, S(Y) ∨ ¬φ(X, Y)

Here Z is the Tseitin predicate (w(Z) = w(Z) = 1) and S is the Skolem predicate
(w(S) = 1, w(S) = −1). This substitution can be used also for eliminating
universal quantifiers since ∀X, φ(X, Y) can be seen as ¬∃X,¬φ(X, Y). Once no
more substitutions can be applied, the resulting program can be turned into
first-order CNF with standard transformations.

This replacement introduces a relaxation of the theory, thus more models
are found. However, for every additional model with weight W , there is exactly
one additional model with weight −W , thus the WFOMC does not change. The
interaction between the three relaxed formulas, the equivalence between Z(Y)
and ∃X, φ(X, Y), and the model weights follow the behaviour:

1. when Z(Y) is false, then ∃X, φ(X, Y) is false while S(Y) is true and the weight
is 1.

2. when Z(Y) is true, then either: (a) ∃X, φ(X, Y) is true and S(Y) is true,
or (b) ∃X, φ(X, Y) is false and S(Y) is true, in which case the state has a
positive weightW , or (c) ∃X, φ(X, Y) is true and S(Y) is false, in which case
the state has weight −W . It is easy to note that the last two cases cancel
out.

The WFOMC encoding for a ProbLog program exploits two mapping functions
which associate the probability p and 1 − p of a probabilistic fact with the
true and false values of the predicate respectively. After the application of
Clark’s completion, the result may not be in Skolem normal form thus the
techniques described above must be applied before executing WFOMC. The
system WFOMC2 solves the WFOMC problem by compiling the input theory
into First Order d-DNNF diagrams [31, 32].

Example 8 (ProbLog program to Skolem normal form). The translation
of the ProbLog program of Example 1 into the WMC input format of the WFOMC
system is

predicate series1 1 1
predicate series2 1 1
predicate self 0.1 0.9
predicate at(P,A) 0.3 0.7
predicate z1 1 1
predicate s1 1 -1
predicate z2 1 1
predicate s2 1 -1

2https://dtai.cs.kuleuven.be/software/wfomc
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series v ! z1
!series v z1
z1 v !self
z1 v !attends(P)
z1 v s1
s1 v !self
s1 v !attends(P)

attends(P) v ! z2(P)
!attends(P) v z2(P)
z2(P) v !at(P,A)
z2(P) v s2(P)
s2(P) v !at(P,A)

Here, predicate is the mapping function for the probability values while z1 and
z2 are Tseitin predicates and s1 and s2 are Skolem predicates.

6. Non-Tight Logic Programs

LP 2 and aggregation parfactors, described in Section 3 and 4 respectively, re-
quire a conversion from ProbLog to PFL for performing inference. The first step
of this translation is the transformation of a ProbLog program into a Bayesian
network with noisy-OR nodes. However, since Bayesian networks cannot have
cycles, this conversion is not correct if the program is non-tight in the sense
proposed by Fages [29]3, i.e., if the program contains positive cycles. A similar
problem occurs with WFOMC: Clark’s completion [28] is correct only for tight
logic programs.

Fages in [29] proved that if an LP program is tight then the Herbrand models
of its Clark’s completion [28] are minimal and coincide with the stable models
of the original LP program. The consequence of this theoretical result is that,
if the ProbLog program is tight, we can correctly convert it into a first-order
theory by means of Clark’s completion.

To apply these techniques to non-tight programs, we need to remove positive
loops. We could first apply a conversion using the method proposed in [30] that
converts normal logic programs to atomic normal programs then to clauses. An
atomic normal program contains only rules of the form

A : - not C1, . . . , not Cm.

where A and Ci are atoms and not denotes Clark’s negation as failure to prove.
Such programs are tight and, as a consequence, it is possible to translate them
into PFL programs and to use Clark’s completion.

3In [29] the programs are not called tight, but positive-order-consistent.
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However this conversion was proposed only for the case of ground LPs.
Proposing a conversion for non-ground programs is an interesting direction for
future work, especially if function symbols are allowed.

7. Experiments

In order to evaluate the performance of the three techniques presented in the
paper, LP2, C-FOVE with aggregation parfactors (C-FOVE-AP) and WFOMC,
we applied them to five problems:

• workshops attributes [5]

• two different versions of competing workshops [5]

• two different versions of Example 7 in [33], that we call plates

All the tests were done on a machine with an Intel Dual Core E6550 2.33GHz
processor and 4GB of main memory. For LP 2 we used the implementation
available in the PFL package of Yap Prolog while for C-FOVE-AP we used the
solver lve of the PFL package that implements C-FOVE. lve implements the
algorithm GC-FOVE. For WFOMC we used version 3.0 of the WFMOC system.

The workshop attributes problem is defined as:

series:- person(P),attends(P),sa(P).
0.501::sa(P):-person(P).
attends(P):- person(P),attr(A),at(P,A).
0.3::at(P,A):-person(P),attr(A).

This problem differs from Example 1 because the first clause for series is
missing and the second clause contains a probabilistic atom in its body, i.e., sa.

The competing workshops problems differ from workshop attributes because
they model, instead of workshop attributes, a set of competing workshops W
each one associated with a binary random variable hot(W), which indicates
whether it is focusing on popular research areas. In one set of experiments,
called competing workshops PH, we associated a probability value to hot(W)
while in the second, competing workshops CH, hot(W) is certain. The ProbLog
program corresponding to competing workshops PH is the following.

series:- person(P),attends(P),sa(P).
0.501::sa(P):-person(P).
attends(P):- person(P),\+ attends_other(P).
attends_other(P):- person(P),workshop(W),hot(W),ah(P,W).
0.8::ah(P,W) :- person(P),workshop(W).
0.51::hot(W) :- workshop(W).

The code for competing workshops CH is obtained from the above by simply
removing the probability annotation from the last clause.

The plates problem is an artificial example designed to challenge lifted infer-
ence systems. The author in [33] stated that solving it in time less than linear
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Figure 1: Runtime of LP2, C-FOVE with aggregation parfactors and WFOMC for the work-
shops attributes problem.

in the population size is part of ongoing research. The problem contains two
sets of individuals, X and Y . The distribution is defined by 7 probabilistic facts
and 9 rules. In particular, in one set of experiments, called plates X, we fixed
the number of Y individuals while we varied the number of X individuals, in
the second set of experiments (plates Y ) we fixed the number of X individuals
and we varied the number of Y s. The ProbLog program corresponding to the
plates problem without individuals is reported in Appendix A.3.
Figure 1 shows the runtime of LP2, C-FOVE with aggregation parfactors (C-
FOVE-AP) and WFOMC on the workshop attributes problem for the query
series, where we fixed the number of people to 50 and we increased the number
of attributes m.

Figure 2 and Figure 3 show the runtime of the three systems on the competing
workshops PH and competing workshops CH problems respectively for the query
series, with 10 competing workshops and an increasing number n of people.

Figure 4 and Figure 5 show the runtime for plates X and plates Y respectively
for the query f where we fixed the number of different Y and X individuals
respectively to 5 and we increased the number of the individuals for the other
variable. The appendix shows the encoding of these problems in PFL and
WMC.

According to [34],[25], function-free first-order logic with equality and 2 vari-
ables per formula (2-FFFOL(=)) is domain-liftable, i.e., the complexity of reason-
ing is polynomial in the domain size. Since all these problems fall in 2-FFFOL(=),
we expect the algorithms to run in polynomial time. As the results show, all the
systems can manage domains that are very large. Moreover, LP2 and C-FOVE
with aggregation parfactors show approximately the same performance on all
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Figure 2: Runtime of LP2, C-FOVE with aggregation parfactors and WFOMC for the com-
peting workshops PH problem.
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Figure 3: Runtime of LP2, C-FOVE with aggregation parfactors and WFOMC for the com-
peting workshops CH problem.
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Figure 4: Runtime of LP2, C-FOVE with aggregation parfactors and WFOMC for the plates
X problem.
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Figure 5: Runtime of LP2, C-FOVE with aggregation parfactors and WFOMC for the plates
Y problem.
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Figure 6: Runtime of WFOMC for the competing workshops PH problem. The number of
people is fixed to 100,000 (setting 1).

problems, with running time increasing roughly linearly with the domain size,
apart from the workshop attributes problem where it grows quadratically.

WFOMC uses exponentiation to the power of the domain size so the time
must be logarithmic in the domain size [35], however the multiplicative constant
factors involved are probably so small that they make the time appear constant.

To investigate more in depth the results for WFOMC, we tested it with
larger domains on competing workshops PH and plates.

For the first problem we considered three different settings:

1. we fixed the number of people to 100,000 while increasing the number of
workshops from 10,000 to 100,000;

2. we fixed the number of workshops to 10,000 while increasing the number
of people from 1000 to 10,000;

3. we kept the number of people and workshops equal and we increased it
from 100 to 10,000.

Results of the first two settings are shown in Figure 6 and Figure 7. In the
first setting WFOMC runs in a time that is roughly linear with a small constant
in the size of the domain. In both tests, with the largest size, i.e., 100,000 in
the first setting and 10,000 in the second one, the process started thrashing. In
particular, in the first setting the computation exceeded 24 hours, while in the
second one the process was killed by the operating system.

Figure 8 shows the results of the third setting, where the X-axis shows the
product of the number of workshops and people. Again the trend is linear,
albeit with a larger constant.
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Figure 7: Runtime of WFOMC for the competing workshops PH problem. The number of
workshops is fixed to 10,000 (setting 2).
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Figure 8: Runtime of WFOMC for the competing workshops PH problem. The number of
both people and workshops increases (setting 3). The X-axis shows the product of the number
of people and workshops.
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Figure 9: Runtime of WFOMC for the plates problem. The size of the domain of variable X
is fixed to 10,000.

Similarly to competing workshops PH, for plates we set up two different
experiments:

1. we fixed the size of the domain of variable X to 10,000 and we varied the
domain size of variable Y from 108 to 2.1× 109;

2. we kept the domain size of X and Y equal and we increased it from 1000
to 107, so that the domain of the couple (X,Y ) ranges from 106 to 1014.

Figure 9 and Figure 10 show the running time in seconds for the two settings.
From these figures we can observe a roughly constant running time when the
domain of only one variable is varied and a linear time when the domains of
both variables are varied. In [33] Poole stated that the problem of performing
inference in less than linear time in the size of the domains of the two variables
was still open. These experiments show that when keeping one domain constant,
the problem is solved, while it is not when the size of the combined domain is
taken into account. In any case, WFOMC is the clear winner for performing
lifted inference on probabilistic logic programs.

8. Conclusions

While this article does not aim at being a complete account of the activity
in the field, we hope to have given an introduction that highlights the impor-
tant results already achieved for lifted inference, supported by an experimental
evaluation of different techniques.
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Figure 10: Runtime of WFOMC for the plates problem. The size of the domain of both
variables X and Y increases. The X-axis is the size of the combined domain, the product of
the domain size for the two variables.

The use of lifted inference can really speed up both inference and learning
processes since it may exempt from taking into consideration all the individuals
of the domain.

Among the proposed systems, LP 2 and aggregation parfactors use variable
elimination, while WFOMC is based on knowledge compilation by means of First
Order d-DNNF diagrams. The experimental results demonstrate that WFOMC
is able to perform inference in a time that is linearly dependent on the domains
of the variables in the considered models, while LP 2 and aggregation parfactors
show a polynomial increase in the inference time.
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Appendix A. Problems code

In this section the Problog and PFL code of the tested domains can be found.

Appendix A.1. Workshops Attributes
To all programs of this section we added 50 workshops and an increasing

number of attributes.
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PFL program for LP2.

het series1,ch1(P);[1.0, 0.0, 0.0, 1.0];[person(P)].

deputy series,series1;[].

bayes ch1(P),attends(P),sa(P);[1.0,1.0,1.0,0.0,
0.0,0.0,0.0,1.0];[person(P)].

bayes sa(P);[0.499,0.501];[person(P)].

het attends1(P),at(P,A);[1.0, 0.0, 0.0, 1.0];[person(P),attr(A)].

deputy attends(P),attends1(P);[person(P)].

bayes at(P,A);[0.7,0.3];[person(P),attr(A)].

PFL program with Aggregation Parfactors.

bayes series,series1;[1.0, 0.0, -1.0, 1.0];[].

bayes series1,ch1(P);[1.0, 0.0, 1.0, 1.0];[person(P)].

bayes ch1(P),attends(P),sa(P);[1.0,1.0,1.0,0.0,
0.0,0.0,0.0,1.0];[person(P)].

bayes sa(P);[0.499,0.501];[person(P)].

bayes attends1(P),at(P,A);[1.0, 0.0, 1.0, 1.0];[person(P),attr(A)].

bayes attends(P),attends1(P);[1.0, 0.0, -1.0, 1.0];[person(P)].

bayes at(P,A);[0.7,0.3];[person(P),attr(A)].

WFOMC program.

predicate series 1 1
predicate attends(P) 1 1
predicate sa(P) 0.501 0.499
predicate at(P,A) 0.3 0.7
predicate z1 1 1
predicate s1 1 -1
predicate z2(P) 1 1
predicate s2(P) 1 -1

series v !z1
!series v z1
z1 v !attends(P) v !sa(P)
z1 v s1
s1 v !attends(P) v !sa(P)

attends(P) v !z2(P)
!attends(P) v z2(P)
z2(P) v !at(P,A)
z2(P) v s2(P)
s2(P) v !at(P,A)
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Appendix A.2. Competing Workshops
For the competing workshops problem we report only the PFL version. For

testing purposes we added 10 workshops and an increasing number of people.

PFL program for LP2.

bayes ch1(P),attends(P),sa(P);[1.0,1.0,1.0,0.0,
0.0,0.0,0.0,1.0];[person(P)].

het series1,ch1(P);[1.0, 0.0, 0.0, 1.0];[person(P)].

deputy series,series1;[].

bayes sa(P);[0.499,0.501];[person(P)].

het attends1(P),ch2(P,W);[1.0, 0.0, 0.0, 1.0];[person(P),workshop(W)].

deputy attends(P),attends1(P);[person(P)].

bayes ch2(P,W),hot(W),ah(P,W);[1.0,1.0,1.0,0.0,
0.0,0.0,0.0,1.0];[person(P),workshop(W)].

bayes ah(P,W);[0.2,0.8];[person(P),workshop(W)].

For competing workshops PH, the program contains also

bayes hot(W);[0.49,0.51];[workshop(W)].

PFL program with Aggregation Parfactors.

bayes ch1(P),attends(P),sa(P);[1.0,1.0,1.0,0.0,
0.0,0.0,0.0,1.0];[person(P)].

bayes series,series1;[1.0, 0.0, -1.0, 1.0];[].

bayes series1,ch1(P);[1.0, 0.0, 1.0, 1.0];[person(P)].

bayes sa(P);[0.499,0.501];[person(P)].

bayes attends1(P),ch2(P,W);[1.0, 0.0, 1.0, 1.0];[person(P),workshop(W)].

bayes attends(P),attends1(P);[1,0,-1,1];[person(P)].

bayes ch2(P,W),hot(W),ah(P,W);[1.0,1.0,1.0,0.0,
0.0,0.0,0.0,1.0];[person(P),workshop(W)].

bayes ah(P,W);[0.2,0.8];[person(P),workshop(W)].

For competing workshops PH, the program contains also

bayes hot(W);[0.49,0.51];[workshop(W)].

WFOMC program.

predicate series 1 1
predicate attends(P) 1 1
predicate sa(P) 0.501 0.499
predicate ah(P,W) 0.8 0.2
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predicate hot(W) 1 1
predicate z1 1 1
predicate s1 1 -1
predicate z2(P) 1 1
predicate s2(P) 1 -1

series v !z1
!series v z1
z1 v !attends(P) v !sa(P)
z1 v s1
s1 v !attends(P) v !sa(P)

attends(P) v ! z2(P)
!attends(P) v z2(P)
z2(P) v !ah(P,W) v!hot(W)
z2(P) v s2(P)
s2(P) v !ah(P,W)v!hot(W)

For competing workshops PH, the definition of predicate hot is

predicate hot(W) 0.51 0.49

Appendix A.3. Plates
For the plates Y (plates X ) problem we added 5 individuals for X (Y ) and

an increasing number of individuals for Y (X).

ProbLog program.

f:- e(Y).

e(Y) :- d(Y),n1(Y).
e(Y) :- y(Y),\+ d(Y),n2(Y).

d(Y):- c(X,Y).

c(X,Y):- b(X),n3(X,Y).
c(X,Y):- x(X),\+ b(X),n4(X,Y).

b(X):- a, n5(X).
b(X):- \+ a,n6(X).

a:- n7.

0.1::n1(Y) :-y(Y).
0.2::n2(Y) :-y(Y).
0.3::n3(X,Y) :- x(X),y(Y).
0.4::n4(X,Y) :- x(X),y(Y).
0.5::n5(X) :-x(X).
0.6::n6(X) :-x(X).
0.7::n7.

PFL program for LP2.

het f1,e(Y);[1.0, 0.0, 0.0, 1.0];[y(Y)].

deputy f,f1;[].
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bayes e1(Y),d(Y),n1(Y);[1.0, 1.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0];[y(Y)].

bayes e2(Y),d(Y),n2(Y);[1.0, 0.0, 1.0, 1.0,
0.0, 1.0, 0.0, 0.0];[y(Y)].

bayes e(Y),e1(Y),e2(Y);[1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 1.0, 1.0];[y(Y)].

het d1(Y),c(X,Y);[1.0, 0.0, 0.0, 1.0];[x(X),y(Y)].

deputy d(Y),d1(Y);[y(Y)].

bayes c1(X,Y),b(X),n3(X,Y);[1.0, 1.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0];[x(X),y(Y)].

bayes c2(X,Y),b(X),n4(X,Y);[1.0, 0.0, 1.0, 1.0,
0.0, 1.0, 0.0, 0.0];[x(X),y(Y)].

bayes c(X,Y),c1(X,Y),c2(X,Y);[1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 1.0, 1.0];[x(X),y(Y)].

bayes b1(X),a,n5(X);[1.0, 1.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0];[x(X)].

bayes b2(X),a,n6(X);[1.0, 0.0, 1.0, 1.0,
0.0, 1.0, 0.0, 0.0];[x(X)].

bayes b(X),b1(X),b2(X);[1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 1.0, 1.0];[x(X)].

bayes a,n7;[1.0, 0.0, 0.0, 1.0];[].

bayes n1(Y);[0.9, 0.1];[y(Y)].
bayes n2(Y);[0.8, 0.2];[y(Y)].
bayes n3(X,Y);[0.7, 0.3];[x(X),y(Y)].
bayes n4(X,Y);[0.6, 0.4];[x(X),y(Y)].
bayes n5(X);[0.5, 0.5];[x(X)].
bayes n6(X);[0.4, 0.6];[x(X)].
bayes n7;[0.3, 0.7];[].

PFL program with Aggregation Parfactors.

bayes f,f1;[1.0, 0.0, -1.0, 1.0];[].

bayes f1,e(Y);[1.0, 0.0, 1.0, 1.0];[y(Y)].

bayes e1(Y),d(Y),n1(Y);[1.0, 1.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0];[y(Y)].

bayes e2(Y),d(Y),n2(Y);[1.0, 0.0, 1.0, 1.0,
0.0, 1.0, 0.0, 0.0];[y(Y)].
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bayes e(Y),e1(Y),e2(Y);[1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 1.0, 1.0];[y(Y)].

bayes d1(Y),c(X,Y);[1.0, 0.0, 1.0, 1.0];[x(X),y(Y)].

bayes d(Y),d1(Y);[1.0, 0.0, -1.0, 1.0];[y(Y)].

bayes c1(X,Y),b(X),n3(X,Y);[1.0, 1.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0];[x(X),y(Y)].

bayes c2(X,Y),b(X),n4(X,Y);[1.0, 0.0, 1.0, 1.0,
0.0, 1.0, 0.0, 0.0];[x(X),y(Y)].

bayes c(X,Y),c1(X,Y),c2(X,Y);[1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 1.0, 1.0];[x(X),y(Y)].

bayes b1(X),a,n5(X);[1.0, 1.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0];[x(X)].

bayes b2(X),a,n6(X);[1.0, 0.0, 1.0, 1.0,
0.0, 1.0, 0.0, 0.0];[x(X)].

bayes b(X),b1(X),b2(X);[1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 1.0, 1.0];[x(X)].

bayes a,n7;[1.0, 0.0, 0.0, 1.0];[].

bayes n1(Y);[0.9, 0.1];[y(Y)].
bayes n2(Y);[0.8, 0.2];[y(Y)].
bayes n3(X,Y);[0.7, 0.3];[x(X),y(Y)].
bayes n4(X,Y);[0.6, 0.4];[x(X),y(Y)].
bayes n5(X);[0.5, 0.5];[x(X)].
bayes n6(X);[0.4, 0.6];[x(X)].
bayes n7;[0.3, 0.7];[].

WFOMC program.

predicate f
predicate e(Y)
predicate d(Y)
predicate n1(Y) 0.1 0.9
predicate n2(Y) 0.2 0.8
predicate c(X,Y)
predicate b(X)
predicate n3(X,Y) 0.3 0.7
predicate n4(X,Y) 0.4 0.6
predicate a
predicate n5(X) 0.5 0.5
predicate n6(X) 0.6 0.4
predicate n7 0.7 0.3
predicate z1 1 1
predicate s1 1 -1
predicate z2(Y) 1 1
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predicate s2(Y) 1 -1

f v !z1
!f v z1
z1 v !e(Y)
z1 v s1
s1 v !e(Y)

e(Y) v !d(Y) v !n1(Y)
e(Y) v d(Y) v !n2(Y)

!e(Y) v d(Y) v!d(Y)
!e(Y) v n1(Y) v!d(Y)
!e(Y) v d(Y) v n2(Y)
!e(Y) v n1(Y) v n2(Y)

d(Y) v ! z2(Y)
!d(Y) v z2(Y)
z2(Y) v !c(X,Y)
z2(Y) v s2(Y)
s2(Y) v !c(X,Y)

c(X,Y) v !b(X) v !n3(X,Y)
c(X,Y) v b(X) v !n4(X,Y)

!c(X,Y) v b(X) v !b(X)
!c(X,Y) v n3(X,Y) v !b(X)
!c(X,Y) v b(X) v n4(X,Y)
!c(X,Y) v n3(X,Y) v n4(X,Y)

b(X) v !a v !n5(X)
b(X) v a v !n6(X)

!b(X) v a v !a
!b(X) v n5(X) v !a
!b(X) v a v n6(X)
!b(X) v n5(X) v n6(X)

a v !n7
!a v n7
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