
Probabilistic Logic-based Process Mining

Elena Bellodi, Fabrizio Riguzzi, and Evelina Lamma

ENDIF – Università di Ferrara – Via Saragat, 1 – 44122 Ferrara, Italy.
{elena.bellodi,evelina.lamma,fabrizio.riguzzi}@unife.it

Abstract. The management of business processes has recently received
much attention, since it can support significant efficiency improvements
in organizations. One of the most interesting problems is the description
of a process model in a language, also equipped with an operational sup-
port, that allows checking the compliance of a process execution (trace)
to the model. Another problem of interest is the induction of these mod-
els from data. In this paper, we present a logic-based approach for the
induction of process models that are expressed by means of a probabilis-
tic logic. The approach first uses the DPML algorithm to extract a set of
integrity constraints from a collection of traces. Then, the learned con-
straints are translated into Markov Logic formulas and the weights for
each formula are tuned using the Alchemy system. The resulting theory
allows to perform probabilistic classification of traces. We tested the pro-
posed approach on a real database of university students’ careers. The
experiments show that the combination of DPML and Alchemy achieves
better results than DPML alone.

Keywords: Business Process Management, Process Mining, Declarative Pro-
cess Models, Statistical Relational Learning

1 Introduction

Organizations usually rely on a number of processes to achieve their mission.
These processes are typically complex and involve a large number of people. The
performance of the organization critically depends on the quality and accuracy of
its processes. Formal ways of representing business processes have been studied
in the area of Business Processes Management (see e.g. [13]).

Recently, the problem of automatically mining a structured description of a
business process directly from real data has been studied by many authors (see
e.g. [5,1,14]). The data in this case consist of execution traces (or histories) of the
process and their collection is performed by information systems which log the
activities performed by the users. This problem has been called Process Mining
or Workflow Mining.

Most work in the field of Process Mining has been devoted to inducing models
in the form of graphs or Petri nets [4]. Recently, however, new modeling languages
have started to appear that are declarative, in the sense that they express only
constraints on process execution rather than encoding them as paths in a graph.

DecSerFlow [3], ConDec [2] and SCIFF [7,6] are examples of such languages.
In particular, SCIFF adopts first-order logic in order to represent the constraints.
The works [16,15,8] presented approaches for learning models in these languages.

Starting from them, in this paper we investigate the adoption of a logic-based
language for representing a process model that is able to encode probabilistic
information. In fact, the complexity and uncertainty of real world domains re-
quire both the use of first-order logic and the use of probability. Recently, various
languages have been proposed in the field of Statistical Relational Learning that
combine the two. One of these is Markov Logic [19,12], that extends first-order
logic by attaching weights to formulas.

We propose to represent process models by means of Markov Logic. Moreover,
we present a logic-based approach for inducing these descriptions that involves
first learning a logical theory with DPML [16] and then attaching weights to the
formulas by means of the Alchemy system [19].

The effectiveness of the approach is illustrated by considering **as a pro-
cess** the careers of real students at the University of Ferrara. The experiment
showed that the combined use of DPML and Alchemy for Process Mining out-
performs the use of DPML only.

The paper is organized as follows: we first discuss how we represent execution
traces and process models with logic programming. Then we present the learning
technique we have adopted for performing Process Mining. After having evalu-
ated the proposed approach on a real world dataset, we discuss related works
and conclude.

2 Process Mining

A trace t is a sequence of events. Each event is described by a number of at-
tributes. The only requirement is that one of the attributes describes the event
type. Other attributes may be the executor of the event or event specific infor-
mation.

An example of a trace is

〈a, b, c〉

where a, b and c are events.

**We define ** a process model PM a formula in a language, for which an
interpreter exists that, when applied to a model PM and a trace t, returns
answer yes if the trace is compliant with the description **(namely the formula
is true in the trace)** and false otherwise.

A bag of process traces L is called a log. The aim of Process Mining is to
infer a process model from a log. Usually, in Process Mining, only compliant
traces are used as input to the learning algorithm, see e.g. [5,1,14]. We consider
instead the case where we are given both compliant and non compliant traces,
since both are relevant for the case under study.

2

2.1 Representing Process Traces and Models with Logic

A process trace can be represented as a logical interpretation (set of ground
atoms): each event is modeled with an atom whose predicate is the event type
and whose arguments store the attributes of the event. Moreover, the atom
contains an extra argument indicating the position in the sequence. For example,
the trace:
〈a, b, c〉

can be represented with the interpretation
{a(1), b(2), c(3)}.

Besides the trace, we may have some general knowledge that is valid for all
traces. This information will be called background knowledge and we assume that
it can be represented as a normal logic program B1. **By using a background
knowledge we are able to encode each trace parsimoniously, by storing only once
the rules that are not specific to a single trace but are true for every trace. For
example, background knowledge contains clauses which define precedence and
succession relations involving the argument ’position’ of the atom representing
an event.**

Rather than simply t, we **therefore** consider M(B ∪ t), the model of the
program B ∪ t according to Clark’s completion [10].

The process language we consider is a subset of the SCIFF language, orig-
inally defined in [6,7], for specifying and verifying interaction in open agent
societies.

A process model in our language is a set of Integrity Constraints (ICs). An
IC, C, is a logical formula of the form

Body → ∃(ConjP1) ∨ . . . ∨ ∃(ConjPn)

∨∀¬(ConjN1) ∨ . . . ∨ ∀¬(ConjNm)
(1)

where Body, ConjPi i = 1, . . . , n and ConjNj j = 1, . . . ,m are conjunctions
of literals built over event atoms or over predicates defined in the background
knowledge.

We will use Body(C) to indicate Body and Head(C) to indicate the formula
∃(ConjP1)∨ . . .∨∃(ConjPn)∨∀¬(ConjN1)∨ . . .∨∀¬(ConjNm) and call them
respectively the body and the head of C. We will use HeadSet(C) to indicate
the set {ConjP1, . . . , ConjPn, ConjN1, . . . , ConjNm}. **(spostato avanti)The
quantifiers in the head apply to all the variables not appearing in the body. The
variables of the body are implicitly universally quantified with scope the entire
formula.**

Body(C), ConjPi i = 1, . . . , n and ConjNj j = 1, . . . ,m will be sometimes
interpreted as sets of literals, the intended meaning will be clear from the context.
All the formulas ConjPj in Head(C) will be called P disjuncts ; all the formulas
ConjNj in Head(C) will be called N disjuncts.

1 A normal logic program is a program containing clauses of the form H ← B1, . . . , Bn

where H is an atom and the Bis are literals, i.e., atoms or negations of atoms

3

An example of an IC is

order(bob, camera, T), T < 10

→∃T1(ship(alice, camera, T1)),

bill(alice, bob, 100, T1), T < T1

∨

∀T1, V ¬bill(alice, bob, V, T1), T < T1

(2)

The meaning of the IC (2) is the following: if bob has ordered a camera at a
time T < 10, then alice must ship it and bill bob 100$ at a time T1 later than
T or alice must not bill bob any expense at a time T1 later than T .

An IC C is true in an interpretation M(B ∪ t), written M(B ∪ t) |= C, if,
for every substitution θ for which Body(C) is true in M(B ∪ t), there exists
a disjunct ∃(ConjPi) or ∀¬(ConjNj) in Head(C) that is true in M(B ∪ t). If
M(B ∪ t) |= C we say that the trace t is compliant with C. A process model H
is true in an interpretation M(B ∪ t) if every IC of H is true in it and we write
M(B ∪ t) |= H. We also say that trace t is compliant with H.

Similarly to what has been observed in [18] for disjunctive clauses, the truth
of an IC in an interpretation M(B ∪ t) can be tested by running the query:

?−Body, not(ConjP1), . . . not(ConjPn),
ConjN1, . . . , ConjNm

against a Prolog database containing the clauses of B and the atoms of t as
facts. Here we assume that B is range-restricted, i.e., that all the variables that
appear in the head of clauses also appear **in positive literals of **the body. If
this holds, every answer to a query Q against B ∪ t completely instantiate Q,
i.e., it produces an element of M(B ∪ t).

If the N disjuncts in the head share some variables, then the following query
must be issued

?−Body, not(ConjP1), . . . not(ConjPn),
not(not(ConjN1)), . . . , not(not(ConjNm))

that ensures that the N disjuncts are tested separately without instantiating the
variables.

If the query finitely fails, the IC is true in the interpretation. If the query
succeeds, the IC is false in the interpretation. Otherwise nothing can be said.

2.2 Learning ICs Theories

In this section, we briefly describe the Declarative Process Model Learner (DPML)
algorithm that was proposed in [16].

DPML finds an IC theory solving the learning problem by searching the space
of ICs. The space is structured using a generality relation based on the following
definition of subsumption.

Definition 1 (Subsumption). An IC D subsumes an IC C, written D ≥ C,
iff it exists a substitution θ for the variables in the body of D or in the N disjuncts
of D such that

4

– Body(D)θ ⊆ Body(C) and
– ∀ConjP (D) ∈ HeadSet(D), ∃ConjP (C) ∈ HeadSet(C) : ConjP (C) ⊆

ConjP (D)θ and
– ∀ConjN(D) ∈ HeadSet(D), ∃ConjN(C) ∈ HeadSet(C) : ConjN(D)θ ⊆

ConjN(C)

If D subsumes C, then D is more general than C. For example, let us consider
the following clauses:

C = accept(X) ∨ refusal(X)← invitation(X)

D = accept(X) ∨ refusal(X)← true

E = accept(X)← invitation(X)

Then C is more general than D and E, while D and E are not comparable.
** The aim of DPML is to discover a set of clauses built through a refinement

operator, on the base of the generality relation. In order to define a refinement
operator, we must first define the language bias.

Language bias consists of a set of IC templates which define the literals that
can be added to clauses. In particular, each template specifies:

– a set of literals BS allowed in the body,
– a set of disjuncts HS allowed in the head. For each disjunct, the template

specifies:
• whether it is a P or an N disjunct,
• the set of literals allowed in the disjunct.

As a consequence language bias prescribes which refinements can be realized, so
that a finite number of those have to be considered, performing the search in the
space of ICs from specific to general. Given an IC D, the finite set of refinements
ρ(D) of D is a set of ICs that are more general than D. The set of refinements
ρ(D) of D is obtained by performing one of the following operations:

– adding a literal from the IC template for D to the body;
– adding a disjunct from the IC template for D to the head;
– adding a literal to an N disjunct in the head;
– removing a literal from a P disjunct in the head.

Given a language bias which prescribes that the body literals must be chosen
among {invitation(X), test(X)} and that the head disjuncts must be chosen
among {accept(X), refusal(X)}, an example of refinements sequence is:

false← true

accept(X)← true

accept(X)← invitation(X)

accept(X) ∨ refusal(X)← invitation(X)

**
The DPML algorithm solves the following learning problem:

Given

5

function DPML(I+, I−, B)
initialize H := ∅
do

C := FindBestIC(I+, I−, B)
if C 6= ∅ then

add C to H

remove from I− all interpretations
that are false for C

while C 6= ∅ and I− is not empty
return H

function FindBestIC(I+, I−, B)
initialize Beam := {false← true}
initialize BestIC := ∅
while Beam is not empty do

initialize NewBeam := ∅
for each IC C in Beam do

for each refinement Ref of C do
if Ref is better than

BestIC then BestIC := Ref

if Ref is not to be pruned then
add Ref to NewBeam

if size of NewBeam > MaxBS

then remove worst clause
from NewBeam

Beam := NewBeam

return BestIC

Fig. 1. DPML learning algorithm

– a space of possible process models H
– a set I+ of positive traces;
– a set I− of negative traces;
– a definite clause background theory B.

Find: a process model H ∈ H such that

– for all i+ ∈ I+, M(B ∪ i+) |= H;
– for all i− ∈ I−, M(B ∪ i−) 6|= H;

If M(B ∪ i) |= C we say that IC C covers the trace i and if M(B ∪ i) 6|= C we
say that C rules out the trace i.

Every IC in the learned theory is seen as a clause that must be true in all
the positive traces (compliant traces) and false in some negative traces (non
compliant traces). The theory composed of all the ICs must be such that all the
ICs are true when considering a compliant trace and at least one IC is false when
considering a non compliant one.

6

The DPML algorithm is an adaptation of ICL [11] and consists of two nested
loops: a covering loop (function DPML in Figure 1) and a generalization loop
(function FindBestIC in Figure 1). In the covering loop negative traces are pro-
gressively ruled out and removed from the set I−. At each iteration of the loop a
new IC C is added to the theory. Each IC rules out some negative interpretations.
The loop ends when I− is empty or when no IC is found.

The IC to be added in every iteration of the covering loop is returned by
function FindBestIC. It looks for an IC by using beam search with p(⊖|C) as
a heuristic function. The search starts from the IC false ← true that is the
most specific and rules out all the negative traces but also all the positive traces.
ICs in the beam are gradually generalized by using the refinement operator.
MaxBeamSize is a user-defined constant storing the maximum size of the beam.

At the end of the refinement cycle, the best IC found so far is returned.

2.3 Probabilistic Integrity Constraints

Markov Logic (ML) [19] is a language that extends first-order logic by attaching
weights to formulas. Semantically, weighted formulas are viewed as templates
for constructing Markov networks. In the infinite-weight limit, ML reduces to
standard first-order logic.

Definition 2 (Markov logic network). A Markov logic network (MLN) L is
a set of pairs (Fi, wi), where Fi is a formula in first-order logic and wi is a real
number. Together with a finite set of constants C = {c1, c2, . . . , cm}, it defines a
Markov network ML,C as follows:

1. ML,C contains one binary node for each possible grounding of each atom
appearing in L. The value of the node is 1 if the ground atom is true, and 0
otherwise.

2. ML,C contains one feature (real-valued function) for each possible grounding
of each formula Fi in L. The value of this feature is 1 if the ground formula
is true, and 0 otherwise. The weight of the feature associated to Fi is wi.

**For example, an MLN containing the formula ∀xSmokes(x)→ Cancer(x)
(smoking causes cancer) applied to the set of constants C = {Anna,Bob} yields
the features Smokes(Anna) →Cancer(Anna) and Smokes(Bob) →Cancer(Bob),
and a ground Markov network with 4 nodes (Smokes(Anna), Cancer(Anna),
Smokes(Bob), Cancer(Bob)).**

A possible world x is an assignment of truth values to every ground atom.
The probability distribution specified by the ground Markov network ML,C over
possible worlds x is given by

P (x) =
1

Z
exp

(

F
∑

i=1

wini(x)

)

(3)

where F is the number of formulas in the MLN, ni(x) is the number of true

groundings of Fi in x, Z is a partition function given by
∑

x
exp

(

∑F

i=1
wini(x)

)

that ensures that P (x) sums to one.

7

A set of ICs can be seen as a “hard” first-order theory that constrains the
set of possible worlds: if a world violates even one formula, it is considered
impossible. The basic idea in Markov Logic is to soften these constraints: when a
world violates one of them it is just less probable, but not impossible. The weight
associated to each formula reflects how strong the constraint is: the higher the
weight, the greater the difference in probability between a world that satisfies
the formula and one that does not, other things being equal.

Once an IC theory has been learned from data, integrity constraints are
transformed into ML formulas and weights are learned for them using the dis-
criminative weight learning algorithm of [12] that is implemented in the Alchemy
system2.

Each IC of the form (1) is translated into the following ML formula:

Body ∧ ¬(ConjP1) ∧ . . . ∧ ¬(ConjPn)

∧(ConjN1) ∧ . . . ∧ (ConjNm)→ neg
(4)

where neg means that the trace is negative. In absence of disjuncts in the head,
the IC Body → false reduces to Body → neg. The head of all the formulas
always contains only the atom neg, while all disjuncts in the head are moved to
the body.

An example of IC referred to the analyzed domain is:

true

→∀A¬registration(A, year(2005))

∨

∀B,C¬enrollment2(B,C, repeating(O))).

This IC states that the students who graduated (positive traces) do not present
registration in the year 2005 or an enrollment in the second year as an out-of-
course student.

The translation into a formula in Markov logic is:

registration(A, 2005)∧

enrollment2(B,C, oc)→ neg

The resulting MLN can then be used to infer the probability of neg given a
database consisting of atoms representing the trace.

3 Review of ROC curves

Research in machine learning has shifted away from simply presenting accuracy
results when performing an empirical validation of new algorithms. This is espe-
cially true when evaluating algorithms that output probabilities of class values.

2 http://alchemy.cs.washington.edu/

8

http://alchemy.cs.washington.edu/

Provost et al. (1998) have argued that simply using accuracy results can be mis-
leading. They recommended when evaluating binary decision problems to use
Receiver Operator Characteristic (ROC) curves, which show how the number
of correctly classified positive examples varies with the number of incorrectly
classified negative examples. In a binary decision problem, a classifier labels ex-
amples as either positive or negative. The decision made by the classifier can
be represented in a structure known as a confusion matrix, that has four cat-
egories: True positives (TP) are examples correctly labeled as positives; False
positives (FP) refer to negative examples incorrectly labeled as positive; True
negatives (TN) correspond to negatives correctly labeled as negative; finally,
false negatives (FN) refer to positive examples incorrectly labeled as negative.
The confusion matrix can be used to construct a point in ROC space: one plots
the False Positive Rate (FPR) on the x-axis and the True Positive Rate (TPR)
on the y-axis. The FPR measures the fraction of negative examples that are mis-
classified as positive (FPR=FP/(FP+TN)). The TPR measures the fraction of
positive examples that are correctly labeled (TPR=TP/(TP+FN)). Informally,
one point in ROC space is better than another if it is to the northwest (tp rate is
higher, fp rate is lower, or both) of the first. The point (0; 1) represents perfect
classification.

A discrete classifier, which gives only a class decision, i.e., a Yes or No on each
instance, produces a single point in ROC space. Some classifiers instead yield
an instance probability or score, a numeric value that represents the degree to
which an instance is a member of a class. An important point about ROC graphs
is that they measure the ability of a classifier to produce good relative instance
scores. A classifier needs not produce accurate, calibrated probability estimates;
it needs only produce relative accurate scores that serve to discriminate positive
and negative instances.

Starting from the set of test examples, the probabilistic classifier’s estimate
that each example is positive, the number of positive and negative examples, an
efficient generation algorithm of ROC curves has been proposed which, for each
positive instance, increments TP, and for every negative instance increments FP.
It maintains a stack R of ROC points, pushing a new point onto R after each
instance is processed. Finally it graphs the set R which contains the points on
the curve (and not a single point like a discrete classifier).

ROC curves are typically generated to evaluate the performance of a machine
learning algorithm on a given dataset, since a dataset contains a fixed number of
positive and negative examples. To evaluate and also to compare different clas-
sifiers one must reduce ROC curve to a single scalar value representing expected
performance. A common method is to calculate the area under the ROC curve,
abbreviated AUC: it may be computed easily using a small modification of the
previous algorithm. Since the AUC is a portion of the area of the unit square,
its value will always be between 0 and 1. Given 2 classifiers and their AUC, the
one with the greater area has better average performance.

9

4 Experiments

Our goal is to demonstrate that the combined use of DPML, for learning an IC
theory, and Alchemy, for learning weights for formulas, produces better results
than the sharp classification realized by the IC theory alone.

The experiments have been performed over a real dataset regarding university
students, where the careers of students that graduated are positive traces and the
careers of students who did not finish their studies are negative ones. We want
to predict whether a student graduates on the basis of her career. To perform
our experiments, we collected 813 careers of students enrolled at the Faculty of
Engineering of the University of Ferrara from 2004 to 2009. The traces have been
labeled as compliant or non compliant with respect to the classification specified
above. There are 327 positive and 486 negative traces.

We first induce an IC theory from these data. Every trace was therefore
adapted to the format required by the DPML algorithm, transforming it into
an interpretation. We considered the main activities performed by a student to-
gether with parameters describing the activities. An example of an interpretation
for a student is the following:

{registration(par1, . . . , parn, 1),

exam(par1, . . . , parm, 2),

exam(par1, . . . , parm, 3),

. . .

career end(par1, n)}

where pari means the i-th parameter for a certain activity. **Each activity has
a fixed number of parameters which reflect the corresponding attributes stored
in the database used. The complete list of logical predicates used, corresponding
to activities, is the following:

– registration, which stores some personal and school information about a
student, with parameters type, mark and year of high school diploma, town
and country of residence, year of registration at university, student’s ID;

– enrollmentN , with N=1..9, which stores the enrollments to years follow-
ing the first (of registration), with parameters enrollment year, course year
(1,2,3), student’s status (out-of-course or not), student’s ID;

– exam, with parameters course id, mark (number), honours (yes/no) and
mark category (low, medium, high);

– career end which stores the career conclusion, with values degree (posi-
tive traces) or abandon, not-renewed enrollment, transfer to another faculty,
transfer to another University (negative traces).

10

A ten-fold cross-validation was used, i.e., the dataset was divided into ten sets
(containing roughly the same proportion of positive and negative traces as the
whole dataset) and ten experiments were performed, where nine sets were used
for training and the remaining one for testing, i.e., for evaluating the accuracy
of the learned theory. In particular, test sets contain either 33 positive and 49
negative traces or 32 positive and 48 negative traces.

The same language bias was used in all ten experiments,** including two IC
templates. The first template prescribed as body literal the exam predicate (with
only the parameter honours specified) and as head disjunct the registration

predicate (without specifying any parameter) and the enrollment1 predicate
(without specifying any parameter); the second template prescribed as body
literals the registration predicate (specifying the year) and the enrollmentN

predicate with N=1..9 (repeating it with different parameters specified: first
no parameters, then enrollment year, course year and student’s status (out-of-
course or not) separately, then course year and student’s status together), and
as head disjunct the registration predicate (distinguishing town and country of
residence separately).**

The accuracy is defined as the number of compliant traces that are correctly
classified as compliant by the learned model plus the number of non compliant
traces that are correctly classified as not compliant divided by the total number
of traces.

Ten different IC theories were learned, composed of a number of rules between
25 and 31. The accuracy of the theories on the test sets ranges from 54% to 86%,
with an average of 67.5%. **Examples of ICs that were obtained, in SCIFF
language, are:

∀A,B,C,D,E registration(A, town(rimini), B,C,D,E)

→

false.

which states that students from the town of Rimini didn’t graduate,

true

→

∀A,B¬enrollment6(year(2009), A,B).

which states that students who enrolled 6 times (year 2009 being the sixth after
registration) didn’t graduate,

∀F,G,H, I, J registration(F, town(bologna), G,H, I, J)

→

∀A¬enrollment1(A, year(2005)).

which states that students living in Bologna and enrolled the first time in 2005
didn’t graduate.**

11

The second step was the assignment of weights to the ICs, by creating ten
MLN containing the theories translated into ML. Each of the ten MLNs were
given as input to Alchemy for discriminative weight learning.

Ten MLNs were also generated from the learned IC theories by assigning the
pseudo-infinite weight 1010 to all the clauses, in order to approximate a purely
logical theory.

The corresponding MLNs to the three ICs above are respectively:

registration(A, rimini,B,C,D,E)

→

neg

enrollment6(2009, A,B)

→

neg

registration(F, bologna,G,H, I, J) ∧ enrollment1(A, 2005)

→

neg

The Alchemy system performs also structure learning, able to learn a complete
MLN composed of both ML formulas and weigths, but in our experiments it
gave problems of memory lack so it could not be completed.

In the third step, we computed the probability of each test trace of being
negative. This was performed by running the belief propagation inference algo-
rithm of [21] (implemented in Alchemy) both on the MLNs with learned weights
and on the MLNs with pseudo-infinite weights. In practice, we computed the
marginal probabilities of the atoms of the form neg(i), with i representing the
identifier of a student in the test dataset.

Finally, we compared the sharp MLN with the weighted MLN using the the
average area under the ROC curve (AUC) [17] that has been identified as a
better measure for evaluating the classification performances of algorithms with
respect to accuracy, because it also takes into account the different distribution
of positive and negative examples in the datasets. The sharp MLN achieved an
average AUC of 0.7107528, while the weighted MLN achieved and average AUC
of 0.7227286. We also applied a one-tailed paired t test: the null hypothesis that
the two algorithms are equivalent can be rejected with a probability of 90.58%.

5 Related Works

Most works on process mining deal with process models in the form of graphs
or Petri nets, that represent the allowed sequences of events as paths in the
diagram. [5] proposed an approach for inducing a process representation in the
form of a directed graph encoding the precedence relationships.

12

[4] proposed the α-algorithm that induces Petri nets. The approach discovers
binary relations in the log, such as the “follows” relation. The α-algorithm is
guaranteed to work for a restricted class of models.

In [14] the result of induction is a process model in the form of a disjunction
of special graphs called workflow schemes.

Recently, a new approach for the representation of process models has ap-
peared, in which the models are seen as sets of constraints over the executions
of the process. These models are called declarative because they state the con-
ditions that process executions must satisfy rather than encoding them as paths
in graphs.

Examples of declarative languages for representing process models are Dec-
SerFlow [3], ConDec [2] and SCIFF [7,6]. [9] describes the relationships be-
tween these languages and shows that ConDec/DecSerFlow can be translated
into SCIFF and a subset of SCIFF can be translated into ConDec/DecSerFlow.

[16] proposed the DPML algorithm that learns process models expressed
in a subset of SCIFF. [15,8] presented the DecMiner system that is able to
infer ConDec/DecSerFlow models by first inducing a SCIFF theory and then
translating it into ConDec/DecSerFlow.

This paper extends the works [16,15,8] by including a probabilistic compo-
nent in the process models. This allows to better model domains where the
relationships among events are uncertain.

Recently, [20] discussed mining of process models in the form of AND/OR
workflow graphs that are able to represent probabilistic information: each event
is considered as a binary random variable that indicates whether the event hap-
pened or not and techniques from the field of Bayesian networks are used to
model a probability distribution over events. The paper presents a learning algo-
rithm that induces a model by identifying the probabilistic relationships among
the events from data. Thus the approach of [20] provides a probabilistic exten-
sion to traditional graph-based models, while we extend declarative modeling
languages by relying on a first-order probabilistic language.

6 Conclusions

We propose a methodology, based both on Logic and Statistical Relational Learn-
ing, for analyzing a log containing several traces of a process, labeled as compliant
or non-compliant. From them we learn a set of declarative constraints expressed
as ICs. Then we represent ICs in Markov Logic, a language extending first-order
logic, to obtain a probabilistic classification of traces, by using the Alchemy sys-
tem. Finally we evaluate the performances of the two models concluding that
probabilistic ICs are more accurate than the pure logical ones. The experiments
have been performed on process traces belonging to a real dataset of university
students’ careers.

Supplementary material, including the code of the systems and an example
dataset, can be found at http://sites.google.com/a/unife.it/ml/pdpm/

13

http://sites.google.com/a/unife.it/ml/pdpm/

7 Acknowledgements

This work was possible thanks to the Audit Office of the University of Ferrara, in
particular Alberto Domenicali and Susanna Nanetti, that supplied the university
dataset for experiments.

References

1. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G.,
Weijters, A.J.M.M.: Workflow mining: A survey of issues and approaches. Data
Knowl. Eng. 47(2), 237–267 (2003)

2. van der Aalst, W.M.P., Pesic, M.: A declarative approach for flexible business
processes management. In: Business Process Management Workshops, BPM 2006
International Workshops, Vienna, Austria, September 4-7, 2006. LNCS, vol. 4103,
pp. 169–180. Springer (2006)

3. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a truly declarative service
flow language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) Proceedings of
the Third International Workshop on Web Services and Formal Methods (WS-FM
2006). LNCS, vol. 4184. Springer (2006)

4. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering
process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142
(2004)

5. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow
logs. In: Proceedings of the 6th International Conference on Extending Database
Technology, EDBT’98. LNCS, vol. 1377, pp. 469–483. Springer (1998)

6. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., P.Torroni: Verifiable
agent interaction in abductive logic programming: The SCIFF framework. ACM
Trans. Comput. Log. 9(4) (2008)

7. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: An abductive in-
terpretation for open societies. In: Cappelli, A., Turini, F. (eds.) Proceedings of
the 8th Congress of the Italian Association for Artificial Intelligence (AI*IA 2003).
LNAI, vol. 2829. Springer Verlag (2003)

8. Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploit-
ing inductive logic programming techniques for declarative process mining. LNCS
Transactions on Petri Nets and Other Models of Concurrency, ToPNoC II 5460,
278–295 (2009), http://www.springerlink.com/content/c4j2k38675588759/

9. Chesani, F., Mello, P., Montali, M., Storari, S.: Towards a decserflow declarative se-
mantics based on computational logic. Technical Report DEIS-LIA-07-002, DEIS,
Bologna, Italy (2007)

10. Clark, K.L.: Negation as failure. In: Logic and Databases. Plenum Press (1978)
11. De Raedt, L., Van Laer, W.: Inductive constraint logic. In: Proceedings of the

6th Conference on Algorithmic Learning Theory. LNAI, vol. 997. Springer Verlag
(1995)

12. Domingos, P., Kok, S., Lowd, D., Poon, H., Richardson, M., Singla, P.: Markov
logic. In: Probabilistic Inductive Logic Programming. Lecture Notes in Computer
Science, vol. 4911, pp. 92–117. Springer (2008)

13. Georgakopoulos, D., Hornick, M.F., Sheth, A.P.: An overview of workflow manage-
ment: From process modeling to workflow automation infrastructure. Distributed
and Parallel Databases 3(2), 119–153 (1995)

14

http://www.springerlink.com/content/c4j2k38675588759/

14. Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models
by clustering log traces. IEEE Trans. Knowl. Data Eng. 18(8), 1010–1027 (2006)

15. Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Inducing declarative
logic-based models from labeled traces. In: Proceedings of the 5th International
Conference on Business Process Management, BPM 2007. pp. 344–359. No. 4714
in Lecture Notes in Computer Science, Springer, Heidelberg, Germany (2007)

16. Lamma, E., Mello, P., Riguzzi, F., Storari, S.: Applying inductive logic pro-
gramming to process mining. In: Proceedings of the 17th International Con-
ference on Inductive Logic Programming, ILP 2007. pp. 132–146. No. 4894 in
Lecture Notes in Artificial Intelligence, Springer, Heidelberg, Germany (2008),
http://dx.doi.org/10.1007/978-3-540-78469-2_16

17. Provost, F.J., Fawcett, T.: Robust classification for imprecise environments. Ma-
chine Learning 42(3), 203–231 (2001)

18. Raedt, L.D., Dehaspe, L.: Clausal discovery. Machine Learning 26(2-3), 99–146
(1997)

19. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2),
107–136 (2006)

20. Silva, R., Zhang, J., Shanahan, J.G.: Probabilistic workflow mining. In: Grossman,
R., Bayardo, R.J., Bennett, K.P. (eds.) Proceedings of the Eleventh ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. pp. 275–284.
ACM (2005)

21. Singla, P., Domingos, P.: Lifted first-order belief propagation. In: Proceedings of
the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008. pp.
1094–1099. AAAI Press (2008)

15

http://dx.doi.org/10.1007/978-3-540-78469-2_16

	Probabilistic Logic-based Process Mining

